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Abstract: This article addresses the problem of improving the convergence order and 
stability of iterative methods for solving nonlinear equations. The main objective is to 
design a new multipoint iterative family with sixth-order convergence and to analyze both 
its convergence behavior and complex dynamics. The methodology combines the 
theoretical analysis of the convergence order, the derivation of the associated rational 
operator, and the use of complex dynamics tools such as stability surfaces, parameter 
planes, and dynamical planes. Numerical experiments conducted on nonlinear test 
equations confirm the results obtained from the convergence and stability analysis. The 
proposed method achieves high accuracy in few iterations, maintaining the Approximate 
Computational Order of Convergence (ACOC) around six and exhibiting competitive 
efficiency compared to classical methods such as Newton, Ostrowski, Jarratt, and CMT. 
The conclusions highlight the robustness of the family with respect to initial conditions. 
The findings have theoretical implications for the design of high-order iterative methods 
and practical implications for solving scientific and engineering problems more 
efficiently. 
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1. Introduction 
To solve problems in science and engineering, it is common to formulate a nonlinear equation or a system 

of nonlinear equations, depending on the number of variables or the specific problem conditions. This type of 
equation arises in chemical processes, astronomical applications, polynomial interpolation, and the discretization 
of one-dimensional boundary value problems, among others. However, due to their nonlinear nature, obtaining 
exact solutions through traditional algebraic techniques is often highly complex or even unfeasible. In such cases, 
it becomes necessary to resort to iterative methods, which allow the solution to be approximated from an initial 
estimate and generate a sequence of values that, under certain conditions, may converge to the exact solution. 

The resolution of nonlinear equations and systems by iterative methods has been, and continues to be, a 
recurring topic in numerical analysis, as evidenced by numerous publications (Artidiello, 2014; Moscoso-
Martínez et al., 2023; Ortega & Rheinboldt, 1970; Traub, 1964), among others. One of the most well-known 
iterative methods for solving a nonlinear equation 𝑓𝑓(𝑥𝑥) = 0 is Newton’s method, which is given by the following 
expression: 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −
𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

, 𝑘𝑘 = 0,1,2,⋯ 

 
Nevertheless, this method exhibits limitations that motivate the search for new schemes with improved 

convergence properties. 
The present research proposes a multipoint iterative family of order six for solving nonlinear equations. 

Because the proposed family depends on a parameter, the method's behavior may vary significantly with its value. 
For this reason, a convergence analysis is carried out to determine the method's order as a function of this 

Citation: Díaz, Andhy.  (2025). Design 

and analysis of a new iterative family 

for solving nonlinear equations. 

Proceedings of the 2025 Academy of 

Latin American Business and 

Sustainability Studies (ALBUS), San 

Miguel, El Salvador. 

https://doi.org/10.70469/ALBUS.09 

 
Copyright:  © with the authors. This 

Open Access article is distributed under 

the terms and conditions of the Creative 

Commons Attribution (CC BY 4.0). 



Díaz | Design and analysis of a new iterative family  274  

 
https://doi.org/10.70469/ALBUS.09  www.albus.lat 

parameter. Furthermore, a dynamical analysis is incorporated to identify the most stable and efficient elements of 
the family, thereby facilitating its application in numerical tests with nonlinear functions of greater complexity. 

 

2. Literature Review 
The resolution of nonlinear and linear systems of equations is a central problem in numerical analysis, with 

applications in physics and chemistry, boundary value problems, and polynomial interpolation. Since obtaining 
exact solutions is often intractable, numerous iterative methods have been developed with different structures and 
convergence orders. 

In recent literature, several multipoint schemes of varying order have been introduced. Singh (2018) 
designed a Steffensen-type method of order five for nonlinear systems, while Chicharro et al. (2019) proposed a 
biparametric family of order six, combining Newton’s and Traub’s methods. More recently, Cordero et al. (2024) 
introduced an innovative technique that increases the order of convergence by three without relying on Jacobian 
matrices, demonstrating strong efficiency in biological models. 

The pursuit of higher orders has motivated the development of more advanced schemes. Shams et al. (2022) 
constructed a three-step family with order eight, and Wang (2021) also proposed a multipoint method for nonlinear 
systems, achieving order eight. On the other hand, Tao & Madhu (2019) designed a scheme with order sixteen, 
although at a high computational cost. It is worth noting, however, that not all these studies include complex 
dynamics or stability analysis. For instance, Wang (2021), despite achieving order eight, did not address stability, 
thereby limiting understanding of the scheme's global behavior. 

In recent years, parametrized iterative families have been developed that integrate tools from fundamental 
and complex dynamics to characterize the stability of fixed points and the structure of basins of attraction 
(Khirallah & Alkhomsan, 2022). This work highlights that dynamic analysis is an essential complement to 
classical convergence studies, as it provides insights into stability regions and chaotic behaviors. 

From this overview, it is evident that most existing methods exhibit convergence orders between three and 
six. Moreover, complete dynamical studies are not always included. Consequently, there is a clear research gap 
for designing schemes that combine high convergence order with a comprehensive stability analysis. The iterative 
family proposed in this work addresses this gap by introducing a sixth-order multipoint scheme supported by 
theoretical convergence analysis and complex dynamical study. 

3. Material and Methods 
The research methodology adopted in this work is both theoretical and applied. A new step within an iterative 

family is proposed to increase the order of convergence without significantly raising the computational cost. In 
the theoretical phase, concepts and theorems from numerical analysis will be employed to rigorously establish the 
order of convergence of the new scheme. Likewise, specific conditions on the parameter under consideration will 
be analyzed to simplify the method's general expression. 

The theoretical order of convergence will be contrasted with the approximate computational order of 
convergence (ACOC), following the proposal of Cordero and Torregrosa (2007). To analyze the method's 
dynamic behavior, a wide range of initial conditions will be considered. The corresponding orbits will be 
constructed from these, and their final states will be identified. This analysis will allow the generation of basins 
of attraction, which illustrate the regions of the plane where the method exhibits greater stability. A predefined 
error tolerance and a maximum number of iterations will define the visualization criterion. In addition, the effects 
of the parameter on the method's stability and rate of convergence, as well as its interactions with the different 
fixed points, will be examined. 

The applied research will corroborate theoretical results. For this purpose, the scheme will be applied to low-
order nonlinear systems and to systems with exponential, logarithmic, and trigonometric equations. MATLAB 
will be used for computational calculations to verify the theoretical results obtained. Both MATLAB and 
Mathematica will be employed to generate graphs. 

4. Results 
4.1 Development of the New Iterative Family 

The starting point is the fourth-order iterative method proposed by Artidiello (2014), whose expression is 
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⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 −

𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

, 𝑘𝑘 = 0,1,2,⋯ ,

𝑥𝑥𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 − �1 + 2
𝑓𝑓(𝑦𝑦𝑘𝑘)
𝑓𝑓(𝑥𝑥𝑘𝑘)�

𝑓𝑓(𝑦𝑦𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)  .

 

 It is intended to improve this method; for this purpose, a third step is proposed in Moscoso-Martínez et al. 
(2023). By incorporating this third step into the method, a new triparametric iterative scheme is obtained. 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 −

𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

, 𝑘𝑘 = 0,1,2,⋯ ,

𝑧𝑧𝑘𝑘 = 𝑦𝑦𝑘𝑘 − (1 + 2𝑠𝑠𝑘𝑘)
𝑓𝑓(𝑦𝑦𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

,

𝑥𝑥𝑘𝑘+1 = 𝑧𝑧𝑘𝑘 − (𝛼𝛼 + 𝛽𝛽𝑠𝑠𝑘𝑘 + 𝛾𝛾𝑡𝑡𝑘𝑘)
𝑓𝑓(𝑧𝑧𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

,

 

where 𝒔𝒔𝒌𝒌 =
𝒇𝒇(𝒚𝒚𝒌𝒌)

𝒇𝒇(𝒙𝒙𝒌𝒌)
 and 𝒕𝒕𝒌𝒌 =

𝒇𝒇′(𝒙𝒙𝒌𝒌)

𝒇𝒇[𝒙𝒙𝒌𝒌,𝒚𝒚𝒌𝒌]
 , where 𝒇𝒇[𝒙𝒙𝒌𝒌,𝒚𝒚𝒌𝒌]  is the divided difference operator defined in (Ortega & 

Rheinboldt, 1970), with 𝜶𝜶, 𝜷𝜷 and 𝜸𝜸 being arbitrary parameters. 

 
4.2 Convergence Analysis of the New Family 

        This section presents the convergence analysis of the new triparametric iterative family. Furthermore, a 
strategy is proposed to reduce the triparametric scheme to a uniparametric one to accelerate convergence.  

Theorem 1. Let 𝑓𝑓:𝐶𝐶 ⊆ ℝ → ℝ be a sufficiently differentiable function on an open and connected set 𝐶𝐶, and let 
𝜉𝜉 ∈ 𝐶𝐶 be a root of 𝑓𝑓(𝑥𝑥) such that 𝑓𝑓′ is continuous at 𝜉𝜉 and 𝑓𝑓′(𝜉𝜉) ≠ 0. Then, if 𝑥𝑥0 is an initial guess sufficiently 
close to 𝜉𝜉 the members of the family converge to 𝜉𝜉 with order of convergence four for the error equation being 
 

𝑒𝑒𝑘𝑘+1 = −(𝑐𝑐2(5𝑐𝑐22 − 𝑐𝑐3)(𝛼𝛼 + 𝛾𝛾 − 1))𝑒𝑒𝑘𝑘4 + 𝒪𝒪(𝑒𝑒𝑘𝑘5), 
 
where 𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝜉𝜉 and 𝑐𝑐𝑗𝑗 = 1

𝑗𝑗!
𝑓𝑓(𝑗𝑗)(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

, for 𝑗𝑗 = 2,3,⋯ 

Proof. Expanding 𝑓𝑓(𝑥𝑥𝑘𝑘) and 𝑓𝑓′(𝑥𝑥𝑘𝑘) around 𝜉𝜉, we obtain 

𝑓𝑓(𝑥𝑥𝑘𝑘) = 𝑓𝑓(𝜉𝜉) + 𝑓𝑓′(𝜉𝜉)𝑒𝑒𝑘𝑘 +
1
2!𝑓𝑓

″(𝜉𝜉)𝑒𝑒𝑘𝑘2 +⋯+
1
6!𝑓𝑓

(𝑣𝑣𝑣𝑣)(𝜉𝜉)𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7)

= 𝑓𝑓′(𝜉𝜉)�𝑒𝑒𝑘𝑘 +
1
2!
𝑓𝑓″(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

𝑒𝑒𝑘𝑘2 +⋯+
1
6!
𝑓𝑓(𝑣𝑣𝑣𝑣)(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7)�

= 𝑓𝑓′(𝜉𝜉) �𝑒𝑒𝑘𝑘 + 𝑐𝑐2𝑒𝑒𝑘𝑘2 + 𝑐𝑐3𝑒𝑒𝑘𝑘3 + 𝑐𝑐4𝑒𝑒𝑘𝑘4 + 𝑐𝑐5𝑒𝑒𝑘𝑘5 + 𝑐𝑐6𝑒𝑒𝑘𝑘6 + 𝒪𝒪�𝑒𝑒𝑘𝑘7�� .

 

𝑓𝑓′(𝑥𝑥𝑘𝑘) = 𝑓𝑓′(𝜉𝜉) + 𝑓𝑓″(𝜉𝜉)𝑒𝑒𝑘𝑘 +
1
2!
𝑓𝑓‴(𝜉𝜉)𝑒𝑒𝑘𝑘2 + ⋯+

1
6!
𝑓𝑓(𝑣𝑣)(𝜉𝜉)𝑒𝑒𝑘𝑘5 + 𝒪𝒪(𝑒𝑒𝑘𝑘6)

= 𝑓𝑓′(𝜉𝜉)�1 +
𝑓𝑓″(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

𝑒𝑒𝑘𝑘 +
1
2!
𝑓𝑓‴(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

𝑒𝑒𝑘𝑘2 + ⋯+
1
6!
𝑓𝑓(𝑣𝑣)(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

𝑒𝑒𝑘𝑘5 + 𝒪𝒪(𝑒𝑒𝑘𝑘6)�

= 𝑓𝑓′(𝜉𝜉)(1 + 2𝑐𝑐2𝑒𝑒𝑘𝑘 + 3𝑐𝑐3𝑒𝑒𝑘𝑘2 + 4𝑐𝑐4𝑒𝑒𝑘𝑘3 + 5𝑐𝑐5𝑒𝑒𝑘𝑘4 + 6𝑐𝑐6𝑒𝑒𝑘𝑘5 + 𝒪𝒪(𝑒𝑒𝑘𝑘6)),

 

where 𝑐𝑐𝑗𝑗 = 1
𝑗𝑗!
𝑓𝑓(𝑗𝑗)(𝜉𝜉)
𝑓𝑓′(𝜉𝜉)

, 𝑗𝑗 = 2,3,⋯ 

Therefore, using 𝑓𝑓(𝑥𝑥𝑘𝑘)  and 𝑓𝑓′(𝑥𝑥𝑘𝑘), the first step of the family is: 



Díaz | Design and analysis of a new iterative family  276  

 
https://doi.org/10.70469/ALBUS.09  www.albus.lat 

𝑦𝑦𝑘𝑘 − 𝜉𝜉 = 𝑐𝑐2𝑒𝑒𝑘𝑘2 + (−2𝑐𝑐22 + 2𝑐𝑐3)𝑒𝑒𝑘𝑘3 + (4𝑐𝑐23 − 7𝑐𝑐2𝑐𝑐3 + 3𝑐𝑐4)𝑒𝑒𝑘𝑘4

+(−8𝑐𝑐24 + 20𝑐𝑐22𝑐𝑐3 − 6𝑐𝑐32 − 10𝑐𝑐2𝑐𝑐4 + 4𝑐𝑐5)𝑒𝑒𝑘𝑘5 + (16𝑐𝑐25 − 52𝑐𝑐23𝑐𝑐3
+28𝑐𝑐22𝑐𝑐4 − 17𝑐𝑐3𝑐𝑐4 + 𝑐𝑐2(33𝑐𝑐32 − 13𝑐𝑐5) + 5𝑐𝑐6)𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7).

 

        Using the expression of 𝑦𝑦𝑘𝑘 the expansion corresponding to 𝑓𝑓(𝑦𝑦𝑘𝑘) is: 

𝑓𝑓(𝑦𝑦𝑘𝑘) = 𝑓𝑓′(𝜉𝜉)(𝑐𝑐2𝑒𝑒𝑘𝑘2 + 2(−𝑐𝑐22 + 𝑐𝑐3)𝑒𝑒𝑘𝑘3 + (5𝑐𝑐23 − 7𝑐𝑐2𝑐𝑐3 + 3𝑐𝑐4)𝑒𝑒𝑘𝑘4 − 2(6𝑐𝑐24

−12𝑐𝑐22𝑐𝑐3 + 3𝑐𝑐32 + 5𝑐𝑐2𝑐𝑐4 − 2𝑐𝑐5)𝑒𝑒𝑘𝑘5 + (28𝑐𝑐25 − 73𝑐𝑐23𝑐𝑐3 + 34𝑐𝑐22𝑐𝑐4
−17𝑐𝑐3𝑐𝑐4 + 𝑐𝑐2(37𝑐𝑐32 − 13𝑐𝑐5) + 5𝑐𝑐6)𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7)).

 

 

This implies that, with 𝑓𝑓(𝑥𝑥𝑘𝑘), 𝑓𝑓′(𝑥𝑥𝑘𝑘), and 𝑓𝑓(𝑦𝑦𝑘𝑘), the second step of the family is given by 

𝑧𝑧𝑘𝑘 − 𝜉𝜉 = (5𝑐𝑐23 − 𝑐𝑐2𝑐𝑐3)𝑒𝑒𝑘𝑘4 − 2(18𝑐𝑐24 − 16𝑐𝑐3𝑐𝑐22 + 𝑐𝑐4𝑐𝑐2 + 𝑐𝑐32)𝑒𝑒𝑘𝑘5

+(170𝑐𝑐25 − 262𝑐𝑐3𝑐𝑐23 + 48𝑐𝑐4𝑐𝑐22 + (66𝑐𝑐32 − 3𝑐𝑐5)𝑐𝑐2 − 7𝑐𝑐3𝑐𝑐4)𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7).
 

The expansion of 𝑓𝑓(𝑧𝑧𝑘𝑘) is 

𝑓𝑓(𝑧𝑧𝑘𝑘) = 𝑓𝑓′(𝜉𝜉) �(5𝑐𝑐23 − 𝑐𝑐2𝑐𝑐3)𝑒𝑒𝑘𝑘4 − 2(18𝑐𝑐24 − 16𝑐𝑐3𝑐𝑐22 + 𝑐𝑐4𝑐𝑐2 + 𝑐𝑐32)𝑒𝑒𝑘𝑘5

+(170𝑐𝑐25 − 262𝑐𝑐3𝑐𝑐23 + 48𝑐𝑐4𝑐𝑐22 + (66𝑐𝑐32 − 3𝑐𝑐5)𝑐𝑐2 − 7𝑐𝑐3𝑐𝑐4)𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7)).
 

The error equation obtained by using 𝑓𝑓(𝑥𝑥𝑘𝑘), 𝑓𝑓′(𝑥𝑥𝑘𝑘), 𝑓𝑓(𝑦𝑦𝑘𝑘), and 𝑓𝑓(𝑧𝑧𝑘𝑘) is 

𝑒𝑒𝑘𝑘+1 = −(𝑐𝑐2(5𝑐𝑐22 − 𝑐𝑐3)(𝛼𝛼 + 𝛾𝛾 − 1))𝑒𝑒𝑘𝑘4 + (𝑐𝑐24(46𝛼𝛼 − 5𝛽𝛽 + 41𝛾𝛾 − 36)
+𝑐𝑐3𝑐𝑐22(−34𝛼𝛼 + 𝛽𝛽 − 33𝛾𝛾 + 32) + 2𝑐𝑐32(𝛼𝛼 + 𝛾𝛾 − 1) + 2𝑐𝑐2𝑐𝑐4(𝛼𝛼 + 𝛾𝛾 − 1))𝑒𝑒𝑘𝑘5

+(𝑐𝑐25(−262𝛼𝛼 + 61𝛽𝛽 − 206𝛾𝛾 + 170) + 𝑐𝑐3𝑐𝑐23(345𝛼𝛼 − 47𝛽𝛽 + 299𝛾𝛾 − 262)
+2𝑐𝑐4𝑐𝑐22(−26𝛼𝛼 + 𝛽𝛽 − 25𝛾𝛾 + 24) + 7𝑐𝑐3𝑐𝑐4(𝛼𝛼 + 𝛾𝛾 − 1)
+𝑐𝑐2(𝑐𝑐32(−73𝛼𝛼 + 4𝛽𝛽 − 69𝛾𝛾 + 66) + 3𝑐𝑐5(𝛼𝛼 + 𝛾𝛾 − 1))�𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7).

 

Which completes the proof.   

Theorem 2. Let 𝑓𝑓:𝐶𝐶 ⊆ ℝ → ℝ be a sufficiently differentiable function on an open and connected set 𝐶𝐶, and let 
𝜉𝜉 ∈ 𝐶𝐶 be a root of 𝑓𝑓(𝑥𝑥) such that 𝑓𝑓′ is continuous at 𝜉𝜉 and 𝑓𝑓′(𝜉𝜉) ≠ 0. Then, if 𝑥𝑥0 is an initial guess sufficiently 
close to 𝜉𝜉 the members of the family converge to 𝜉𝜉 with an order of convergence of six whenever 𝛽𝛽 = 1 + 𝛼𝛼 and 
𝛾𝛾 = 1 − 𝛼𝛼 with the error equation being 
 

𝑒𝑒𝑘𝑘+1 = 𝑐𝑐2(5𝑐𝑐22 − 𝑐𝑐3)�(5 + 𝛼𝛼)𝑐𝑐22 − 𝑐𝑐3�𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7). 

Proof.  It is possible to increase the order of convergence of the scheme; to do so, the terms 𝑒𝑒𝑘𝑘4 and 𝑒𝑒𝑘𝑘5 In the 
error expression, the expression must be canceled. Therefore, the parameters must satisfy the following system of 
equations. 

�
𝛼𝛼 + 𝛾𝛾 = 1,

46𝛼𝛼 − 5𝛽𝛽 + 41 𝛾𝛾 = 36,
−34𝛼𝛼 + 𝛽𝛽 − 33 𝛾𝛾 = −32.

 

 

By manipulating the equations, the following expressions are obtained: 

𝛽𝛽 = 1 + 𝛼𝛼 and 𝛾𝛾 = 1 − 𝛼𝛼, 
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and substituting the parameters, the new error equation is obtained 

𝑒𝑒𝑘𝑘+1 = 𝑐𝑐2(5𝑐𝑐22 − 𝑐𝑐3)�(5 + 𝛼𝛼)𝑐𝑐22 − 𝑐𝑐3�𝑒𝑒𝑘𝑘6 + 𝒪𝒪(𝑒𝑒𝑘𝑘7). 

Which proves the statement. ◻ 

From Theorem 2, it follows that if only the parameter 𝛼𝛼 is kept, the new three-parameter iterative family 
reduces to a one-parameter family with order of convergence six, for any real or complex values of the parameters, 
provided that the condition is satisfied. The previous analysis has been developed assuming that 𝜉𝜉 is a simple root. 
However, the family can be extended to the case of multiple roots by relying on the modified Newton’s method 
for roots with multiplicity 𝑚𝑚 , whose expression is given by 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝑚𝑚 
𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘), 

so that the order of convergence can be preserved without requiring significant modifications to the 
expression of the proposed family. 

4.3 Stability analysis 

This section focuses on the study of the dynamic properties of the rational operator determined by the 
iterative family. The dynamic analysis provides important information on the stability of each family member, 
depending on the initial approximations used. A rational operator will be obtained to conduct the analysis, thereby 
enabling the construction of parameter spaces and dynamical planes. These representations in the complex plane 
allow us to observe the behavior of the method as a function of the parameter 𝛂𝛂 and to study the basins of 
attraction, fixed points, and attractors. The rational operator of the family can be constructed for any nonlinear 
function 𝒇𝒇(𝒙𝒙). In this case, it will be built from a quadratic polynomial, and the results obtained will then be 
extrapolated to functions of greater complexity. 

 
Theorem 3. Let 𝑝𝑝(𝑥𝑥) = (𝑥𝑥 − 𝑎𝑎)(𝑥𝑥 − 𝑏𝑏) be a generic polynomial with roots 𝑎𝑎, 𝑏𝑏 ∈ ℝ. Then, the rational operator 
𝑂𝑂𝛼𝛼(𝑧𝑧) associated with the family and applied to 𝑝𝑝(𝑥𝑥) is 
 

𝑂𝑂𝛼𝛼(𝑧𝑧) =
𝑧𝑧6(𝑧𝑧2 + 4𝑧𝑧 + 5)𝑀𝑀(𝑧𝑧)
(5𝑧𝑧2 + 4𝑧𝑧 + 1)𝑁𝑁(𝑧𝑧)  

 
where 𝛼𝛼 ∈ ℂ is an arbitrary parameter, and moreover 𝑀𝑀(𝑧𝑧) and 𝑁𝑁(𝑧𝑧) are polynomials depending on the 
parameter 𝛼𝛼 ∈ ℂ. 

Proof.  We consider the generic polynomial, 𝒑𝒑(𝒙𝒙) = (𝒙𝒙 − 𝒂𝒂)(𝒙𝒙 − 𝒃𝒃), where 𝒂𝒂,𝒃𝒃 ∈ ℝ are its roots. By 
applying 𝒑𝒑(𝒙𝒙) to the family, we obtain a rational operator 𝑹𝑹𝒑𝒑(𝒙𝒙,𝜶𝜶,𝒂𝒂,𝒃𝒃) which depends on the roots of the 
polynomial 𝒑𝒑(𝒙𝒙).  To eliminate the dependence on the roots, we consider the Möbius transformation defined as 

𝑯𝑯(𝒛𝒛) =
𝒛𝒛 − 𝒂𝒂
𝒛𝒛 − 𝒃𝒃

, 

which satisfies 𝑯𝑯(∞) = 𝟏𝟏, 𝑯𝑯(𝒂𝒂) = 𝟎𝟎 and 𝑯𝑯(𝒃𝒃) = ∞. Therefore, we obtain 

𝑶𝑶𝜶𝜶(𝒛𝒛) = (𝑯𝑯 ∘ 𝑹𝑹 ∘ 𝑯𝑯−𝟏𝟏)(𝒛𝒛) =
𝒛𝒛𝟔𝟔(𝒛𝒛𝟐𝟐 + 𝟒𝟒𝟒𝟒 + 𝟓𝟓)𝑴𝑴(𝒛𝒛)
(𝟓𝟓𝒛𝒛𝟐𝟐 + 𝟒𝟒𝟒𝟒 + 𝟏𝟏)𝑵𝑵(𝒛𝒛) , 

where the polynomials have been defined as 

𝑴𝑴𝜶𝜶(𝒛𝒛) = 𝜶𝜶 + 𝟓𝟓 + (𝟑𝟑𝟑𝟑 + 𝟒𝟒𝟒𝟒)𝒛𝒛 + (𝟗𝟗𝟗𝟗 + 𝟓𝟓𝟓𝟓)𝒛𝒛𝟐𝟐 + 𝟏𝟏𝟏𝟏𝟏𝟏𝒛𝒛𝟑𝟑 + 𝟏𝟏𝟏𝟏𝟏𝟏𝒛𝒛𝟒𝟒

+𝟗𝟗𝟗𝟗𝒛𝒛𝟓𝟓 + 𝟑𝟑𝟑𝟑𝒛𝒛𝟔𝟔 + 𝟗𝟗𝒛𝒛𝟕𝟕 + 𝒛𝒛𝟖𝟖,
𝑵𝑵𝜶𝜶(𝒛𝒛) = 𝟏𝟏 + 𝟗𝟗𝟗𝟗 + 𝟑𝟑𝟑𝟑𝒛𝒛𝟐𝟐 + 𝟗𝟗𝟗𝟗𝒛𝒛𝟑𝟑 + 𝟏𝟏𝟏𝟏𝟏𝟏𝒛𝒛𝟒𝟒 + 𝟏𝟏𝟏𝟏𝟏𝟏𝒛𝒛𝟓𝟓 + (𝟗𝟗𝟗𝟗 + 𝟓𝟓𝟓𝟓)𝒛𝒛𝟔𝟔

+(𝟑𝟑𝟑𝟑 + 𝟒𝟒𝟒𝟒)𝒛𝒛𝟕𝟕 + (𝟓𝟓 + 𝜶𝜶)𝒛𝒛𝟖𝟖.
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Since the factor 𝒛𝒛𝟔𝟔 is involved in the operator 𝑶𝑶𝜶𝜶(𝒛𝒛), it is confirmed that the iterative family has an order 
of at least six in the case of quadratic equations. 

Once the rational operator 𝑶𝑶𝜶𝜶(𝒛𝒛) has been obtained, it is possible to determine its fixed points and to classify 
them by stability. 
 
Proposition 1. Considering the equation 𝑂𝑂𝛼𝛼(𝑧𝑧) = 𝑧𝑧 the results obtained are: 

• 𝑥𝑥 = 0 and 𝑥𝑥 = ∞ are fixed points of 𝑂𝑂𝛼𝛼(𝑥𝑥) for any 𝛼𝛼 ∈ ℂ. 
• 𝑥𝑥 = 1 is a strange, fixed point. 
• The roots of the polynomial 

 
𝑘𝑘𝛼𝛼(𝑡𝑡) = 1 + 14𝑡𝑡 + 92𝑡𝑡2 + 377𝑡𝑡3 + 1079𝑡𝑡4 + (2263 − 5𝛼𝛼)𝑡𝑡5 + (3528 − 24𝛼𝛼)𝑡𝑡6

+(4088 − 42𝛼𝛼)𝑡𝑡7 + (3528 − 24𝛼𝛼)𝑡𝑡8 + (2263 − 5𝛼𝛼)𝑡𝑡9 + 1079𝑡𝑡10

+377𝑡𝑡11 + 92𝑡𝑡12 + 14𝑡𝑡13 + 𝑡𝑡14
 

 
denoted by 𝑒𝑒𝑥𝑥𝑖𝑖(𝛼𝛼) with 𝑖𝑖 = 1,2,⋯ ,14, are strange, fixed points of the operator 𝑂𝑂𝛼𝛼(𝑧𝑧). 
 

To analyze the stability of the fixed points, one obtains 

𝑂𝑂′α(𝑥𝑥) =
−4𝑥𝑥6(1 + 𝑥𝑥)10(1 + 𝑥𝑥2)(1 + 𝑥𝑥 + 𝑥𝑥2)𝑄𝑄(𝑥𝑥)

(−1 − 3𝑥𝑥 − 4𝑥𝑥2 − 3𝑥𝑥3 + (−1 + 2𝛼𝛼)𝑥𝑥4)2(𝑁𝑁(𝑥𝑥))2
, 

where has the polynom 

𝑄𝑄(𝑥𝑥) = −7(1 + 𝑥𝑥)4(1 + 𝑥𝑥 + 𝑥𝑥2)3(5 + 4𝑥𝑥 + 5𝑥𝑥2) + 2𝛼𝛼(1 + 𝑥𝑥)2(1 + 𝑥𝑥 + 𝑥𝑥2)
+2𝛼𝛼(1 + 𝑥𝑥)2(1 + 𝑥𝑥 + 𝑥𝑥2)(35 + 46𝑥𝑥 + 53𝑥𝑥2 − 22𝑥𝑥3 − 20𝑥𝑥4 − 22𝑥𝑥5

+53𝑥𝑥6 + 46𝑥𝑥7 + 35𝑥𝑥8) + 2𝛼𝛼2𝑥𝑥(4 + 25𝑥𝑥 + 72𝑥𝑥2 + 20𝑥𝑥3 + 2𝑥𝑥4 − 66𝑥𝑥5

+2𝑥𝑥6 + 20𝑥𝑥7 + 72𝑥𝑥8 + 25𝑥𝑥9 + 4𝑥𝑥10).

 

Proposition 2. The points 𝑥𝑥 = 0 and 𝑥𝑥 = ∞ are superattractors for all 𝛼𝛼 ∈ ℂ. The extraneous fixed point 𝑥𝑥 = 1 
satisfies the following: 

• If |1445 + 25𝛼𝛼| > 6144, then 𝑥𝑥 = 1 is an attractor. Moreover, 𝑥𝑥 = 1 cannot be a superattractor. 
• If |1445 + 25𝛼𝛼| < 6144, then 𝑥𝑥 = 1 is a repeller. 
• If |1445 + 25𝛼𝛼| = 6144, then 𝑥𝑥 = 1 is parabolic. 

Let 𝑅𝑅𝑝𝑝 be a rational operator determined by an iterative family, and let 𝑧𝑧0 be a fixed point of 𝑅𝑅𝑝𝑝. Let  𝛼𝛼 ∈
ℂ be a parameter of the iterative family. Then, the function ℎ: ℂ → ℂ defined by ℎ(𝛼𝛼) = 𝑅𝑅𝑝𝑝′ (𝑧𝑧0,𝛼𝛼) is called the 
stability function. 

To numerically analyze the stability function, stability diagrams are used. These diagrams represent the 
surface generated in space by the function 𝜙𝜙(𝛼𝛼) = |𝑅𝑅𝑝𝑝′ (𝑧𝑧0,𝛼𝛼)|. On the 𝑍𝑍-axis, the values of |𝑅𝑅𝑝𝑝′ (𝑧𝑧0,𝛼𝛼)| are plotted, 
while on the 𝑋𝑋𝑋𝑋-plane, the real and imaginary parts of 𝛼𝛼 ∈ ℂ are represented. Through these visualizations, one 
can identify the regions where 𝑧𝑧0 acts as a repulsive or attractive strange fixed point. The regions where the strange 
fixed point is repulsive are colored in gray, and those where it is attractive are shown in another color. 
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Figure 1. Stability surface for a strange, fixed point 𝑥𝑥 = 1. Region of the complex plane: 
[−450, 400] × [−450,400]. 

 

Figure 2. Stability surfaces for strange, fixed points 𝑒𝑒𝑥𝑥𝑖𝑖(𝛼𝛼) with 𝑖𝑖 = 1,2,⋯ ,14. Región of the complex 
plane: [0, 200] × [−150,150] and [−450, 400] × [−450,400]. 

In the following result, an analysis of the critical points of the rational operator is carried out. 

Proposition 3. The critical points of the rational operator are 𝑥𝑥 = 0 and 𝑥𝑥 = ∞, while the free critical points are 
𝑥𝑥 = −1 and the roots of the polynomial 
 

ℎ(𝑡𝑡) = 150 + 30𝛼𝛼 + (1155 + 133)𝑡𝑡 + (3908 + 192)𝑡𝑡2 + (7489 − 9𝛼𝛼)𝑡𝑡3 + (9276 − 92𝛼𝛼)𝑡𝑡4

+(7489 − 9𝛼𝛼)𝑡𝑡5 + (3908 + 192)𝑡𝑡6 + (1155 + 133)𝑡𝑡7 + (150 + 30𝛼𝛼)𝑡𝑡8,
 

 
and the roots of the polynomial, which are denoted by 𝑐𝑐𝑟𝑟𝑖𝑖(𝛼𝛼) for 𝑖𝑖 = 1,2,⋯ ,8. 
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The parameter space is constructed by meshing the complex plane, where each point corresponds to a value 
of the parameter 𝛼𝛼 ∈ ℂ. For each value 𝛼𝛼, the free critical point  𝑐𝑐𝑐𝑐𝑖𝑖(𝛼𝛼) is taken as the initial guess. The mesh 
point is colored red if the method converges to a root; otherwise, it is colored black. To draw the parameter planes, 
a mesh of 1000×1000 points, a tolerance of 10−3, and a maximum of 100 iterations have been considered. To 
construct the parameter planes, the code proposed by Chicharro et al. (2013) is used. 

 

Figure 3.  Parameter planes for the free critical points. Mesh size: 1000 × 1000; tolerance: 10−3; 
maximum iterations: 100; color map: red (convergent), black (non-convergent); region of the complex 
plane: [−350, 250] × [−300,300]. 

 
The dynamical plane is a tool from complex dynamics that provides additional information beyond that 

obtained from stability surfaces and parameter planes. The dynamical plane is constructed similarly to the 
parameter plane: a grid of the complex plane is considered, and each point 𝑥𝑥0 ∈  ℂ represents an initial estimate 
for the iterative method. Depending on the convergence behavior, each point is represented by a specific color. 
For constructing the dynamical planes, the code proposed by Chicharro et al. (2013) is used. For the construction 
of the dynamical planes, values of the parameter 𝛼𝛼 belonging to stable and unstable regions in the parameter 
planes are selected. A mesh of 1000 × 1000 points, a maximum of 100 iterations, and a tolerance of 10−3 are 
used. 
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 Figure 4. Dynamical planes associated with stable values. Mesh size: 1000 × 1000; tolerance: 10−3; 
maximum iterations: 100. 

In Figure 4, the values 𝛼𝛼 = 0,−1,−5, and −1445
25

 have been considered. It can be observed that for 𝛼𝛼 =
0,−1, and −5, two basins of attraction appear: that of 𝑥𝑥 = 0, represented in orange, and that of 𝑥𝑥 = ∞ represented 
in blue, thus yielding a simple dynamic behavior for these parameters. However, when 𝛼𝛼 = −1445

25
 , black regions 

appear, which may indicate convergence issues of the method, even though α lies within a convergence region in 
the parameter planes. 

 

 

 

 

a) 𝛼𝛼 = 0 b)  𝛼𝛼 = −1 

c) 𝛼𝛼 = −5 
d) 𝛼𝛼 = −1445

25
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Figure 5. Dynamical planes associated with unstable values. Mesh size: 1000 × 1000; tolerance: 10−3; 

maximum iterations: 100. 

In Figure 5, when taking 𝛼𝛼 = 60, three basins of attraction can be observed: that of 𝑥𝑥 = 0, that of 𝑥𝑥 = ∞ and 
a black region indicating non-convergent zones. For 𝛼𝛼 = 150, four basins of attraction appear: the green one, 
which is associated with the strange fixed point 𝑥𝑥 = 1 , and the black one, which indicates slow convergence. 
When 𝛼𝛼 = 300, the green region becomes considerably larger and is associated with the strange fixed point 𝑥𝑥 =
1. For 𝛼𝛼 = −200, black regions are observed, indicating that the method is not stable for this parameter. 

To quantify the regions observed in the dynamical planes, a color-based analysis was performed on the inner 
frame of each figure. The tones associated with convergence (blue and orange) were grouped together, while the 
remaining colors (including green, red, and black) were classified as non-convergent regions. This provides an 
approximate measure of the percentage of mesh points that converge to a root versus those that diverge or remain 
undefined. 

 
 
 
 
 

Table 1. Percentage of mesh classified by convergence. 

c) 𝛼𝛼 = 300 d) 𝛼𝛼 = −200 

a) 𝛼𝛼 = 60 
b) 𝛼𝛼 = 150 
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𝛼𝛼 Convergence (%) Non-convergence (%) 
60 71.47 28.53 

150 40.60 59.40 
-200 36.98 63.02 
300 27.76 72.24 

 
When considering the value of 𝛼𝛼 = 60, it is observed that 71.47% of the grid points converge to the roots of 

the polynomial. However, when 𝛼𝛼 = 150,−200, 300, there is a higher percentage of initial grid points for which 
the method does not converge. This is due to the presence of other basins of attraction associated with the strange 
fixed points. 
 

4. Discussion 
 
In this section, several numerical tests will be carried out to confirm the validity of the results related to the 

convergence and stability of the family M6(α). To perform the numerical tests, one value of the parameter α that 
generates a stable method and another value of α that generates an unstable method will be considered, and each 
method will be applied to ten nonlinear equations. The expressions of these equations and their respective roots 
are shown in Table 2. 

MATLAB 2022b is used for numerical tests, with variable-precision arithmetic with 500 mantissa digits. 
The stopping criterion is established as |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| < 10−100  or |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| < 10−100, with a maximum number 
of 30 iterations. The approximate computational order of convergence (ACOC) will be obtained to verify the 
theoretical order of convergence. If the method does not converge within 30 iterations, the ACOC is indicated as 
“nc”, and if the ACOC fails to stabilize, the symbol “-” is used. 
 

Table 2. Nonlinear test equations. 

Nonlinear equations Roots 
𝑓𝑓1(𝑥𝑥) = cos(𝑥𝑥) − 2𝑥𝑥2 + 1 = 0 𝜉𝜉 ≈ 0.90036 
𝑓𝑓2(𝑥𝑥) = 2 + (𝑥𝑥 − 1)3 + 𝑒𝑒𝑥𝑥2 = 0 𝜉𝜉 ≈ −0.48322 

𝑓𝑓3(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥 + cos(𝑥𝑥) − 3𝑥𝑥2 − 2 = 0 𝜉𝜉 ≈ 1.95874 
𝑓𝑓4(𝑥𝑥) = arctan(𝑥𝑥3) + �𝑥𝑥2 + 2𝑥𝑥 − 4 = 0 𝜉𝜉 ≈ 1.78793 

𝑓𝑓5(𝑥𝑥) = log(𝑥𝑥2 + 2) − 𝑥𝑥3 + 1 = 0 𝜉𝜉 ≈ 1.32435 
  

 
For the numerical experiments, the parameters 𝛼𝛼 = 0 and 𝛼𝛼 = 300 are chosen, where the former simplifies 

the rational operator and also provides a simple dynamical behavior, while the latter, according to Figure 5, 
exhibits an unstable behavior. 

Table 3. Numerical results of M6(0) on nonlinear equations (1/2). 

Function 𝑥𝑥0 |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations ACOC Time 
 𝑥𝑥0 ≈ 𝜉𝜉      
𝑓𝑓1 0.8 1.0243 × 10−34 5.3686 × 10−204 3 6.0634 0.06392 
𝑓𝑓2 −0.5 8.5634 × 10−66 1.5786 × 10−390 3 5.9952 0.09636 
𝑓𝑓3 1.9 2.1979 × 10−29 8.9641 × 10−170 3 6.0769 0.07919 
𝑓𝑓4 1.7 2.6226 × 10−55 1.1284 × 10−330 3 6.0345 0.09936 
𝑓𝑓5 1.3  4.5353 × 10−51 4.2986 × 10−301 3 6.0119 0.07426 
 𝑥𝑥0 ≈ 10𝜉𝜉      

 

Table 4. Numerical results of M6(0) on nonlinear equations (2/2). 
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Function 𝑥𝑥0 |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations ACOC Time 
𝑓𝑓1 8.0  1.6369 × 10−66 8.9396 × 10−395 5 5.9955 0.08241 
𝑓𝑓2 −5.0 1.5400 × 10−34  2.1337 × 10−198 15 5.9537  0.31003 
𝑓𝑓3 19.0 7.9402 × 10−93 0 14  5.9996 0.25701 
𝑓𝑓4 17.0 2.0179 × 10−73 2.3415 × 10−439 4 6.0089 0.11272 
𝑓𝑓5 13.0  1.6049 × 10−28 8.4429 × 10−166 6 5.9010 0.11082 

 
With 𝛼𝛼 = 0, the iterative family shows a highly stable and accurate performance, confirming an approximate 

convergence order of six in all analyzed cases. For initial conditions close to the root, the method converges in 
only three iterations, with minimal errors and residuals, demonstrating high numerical precision and low 
computational cost. Even when the initial point is farther from the root, the method preserves its stability and the 
same convergence order. However, it requires more iterations (4-15) and slightly longer execution times. Overall, 
the results confirm that the value 𝛼𝛼 = 0 provides an optimal performance within the family, combining efficiency, 
speed, and robustness with respect to variations in the initial condition. 

 

Table 5. Numerical results of M6(300) on nonlinear equations. 

Function 𝑥𝑥0 |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations ACOC Time 
 𝑥𝑥0 ≈ 𝜉𝜉      
𝑓𝑓1 0.8 7.4561 × 10−22 4.7700 × 10−125 3 6.1290 0.06504 
𝑓𝑓2 −0.5 1.4314 × 10−53 1.9739 × 10−315 3 5.9922 0.09011 
𝑓𝑓3 1.9 2.5029 × 10−89 0 4 5.9997 0.09704 
𝑓𝑓4 1.7 7.3766 × 10−40 9.9462 × 10−236 3 6.0392  0.09768 
𝑓𝑓5 1.3  3.0434 × 10−38 2.5510 × 10−222 3 6.0206 0.06722 
 𝑥𝑥0 ≈ 10𝜉𝜉      
𝑓𝑓1 8.0 nc nc nc nc nc 
𝑓𝑓2 −5.0 nc nc nc nc nc 
𝑓𝑓3 19.0 nc nc nc nc nc 
𝑓𝑓4 17.0 7.6319 × 10−74 1.2198 × 10−439 4 5.9973 0.12416 
𝑓𝑓5 13.0  nc nc nc nc nc 

 
When comparing the results obtained for 𝛼𝛼 = 300 with those for 𝛼𝛼 = 0, it is observed that the iterative 

family M6(𝛼𝛼) maintains an approximate convergence order of six and high numerical accuracy in both cases when 
the initial point is close to the root . For 𝛼𝛼 = 300, the method solves in three or four iterations, with errors and 
residuals on the order of 10−22 − 10−89 and 10−125 − 10−315, respectively, values comparable to those obtained 
with 𝛼𝛼 = 0. However, when analyzing more distant initial conditions, the behavior differs significantly: while for 
𝛼𝛼 = 0 the method remains convergent in all cases, for 𝛼𝛼 = 300 the process diverges for most of the test functions, 
except for one case where it stabilizes and preserves the theoretical order. Consequently, although both parameter 
values yield efficient performance near the root, 𝛼𝛼 = 0  provides greater global stability, whereas 𝛼𝛼 =
300 exhibits a more restrictive and unstable dynamic when the initial condition varies. 

Next, a comparative analysis will be carried out between a stable method of the family M6(α) and five 
iterative methods of different orders, to evaluate the numerical performance in solving nonlinear equations. The 
parameter 𝛼𝛼 = −5 is chosen, since a more simplified rational operator is obtained, which is 

𝑂𝑂−5(𝑧𝑧) =
𝑧𝑧7(𝑧𝑧2 + 4𝑧𝑧 + 5)(𝑧𝑧7 + 9𝑧𝑧6 + 37𝑧𝑧5 + 92𝑧𝑧4 + 149𝑧𝑧3 + 153𝑧𝑧2 + 73𝑧𝑧 + 14)
(5𝑧𝑧2 + 4𝑧𝑧 + 1)(1 + 9𝑧𝑧 + 37𝑧𝑧2 + 92𝑧𝑧3 + 149𝑧𝑧4 + 153𝑧𝑧5 + 73𝑧𝑧6 + 14𝑧𝑧7). 

Thus reducing the number of strange fixed points and free critical points. Moreover, 𝛼𝛼 = −5 belongs to the 
stable region in the parameter planes, and for 𝛼𝛼 = −5, according to Proposition 2, the strange fixed point 𝑥𝑥 = 1 
is repulsive. 

 
The iterative methods considered in this study are the following: 



Díaz | Design and analysis of a new iterative family  285  

 
https://doi.org/10.70469/ALBUS.09  www.albus.lat 

 
• Newton’s method, denoted as NM, and its expression is 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −
𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

, 𝑘𝑘 = 0,1,2,⋯ 

• The method of Ostrowski (1960), denoted as MO and defined as 

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 −

𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

,

𝑥𝑥𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 −
𝑓𝑓(𝑥𝑥𝑘𝑘)

𝑓𝑓(𝑥𝑥𝑘𝑘) − 2𝑓𝑓(𝑦𝑦𝑘𝑘)
𝑓𝑓(𝑦𝑦𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

, 𝑘𝑘 = 0,1,2,⋯
 

• The method of Jarratt (1969), denoted as MJ, and its expression is 

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 −

2
3
𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

,

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −
1
2
𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘)

�
3𝑓𝑓′(𝑦𝑦𝑘𝑘) + 𝑓𝑓′(𝑥𝑥𝑘𝑘)
3𝑓𝑓′(𝑦𝑦𝑘𝑘) − 𝑓𝑓′(𝑥𝑥𝑘𝑘)

� , 𝑘𝑘 = 0,1,2⋯
 

• The sixth-order method proposed (Cordero et al., 2021), denoted as CMT, and its expression is 
 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 −

𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘) ,

𝑧𝑧𝑘𝑘 = 𝑦𝑦𝑘𝑘 −
𝑓𝑓(𝑦𝑦𝑘𝑘)

2𝑓𝑓[𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘] − 𝑓𝑓′(𝑥𝑥𝑘𝑘) ,

𝑥𝑥𝑘𝑘+1 = 𝑧𝑧𝑘𝑘 − (𝛽𝛽 + (1 + 𝛽𝛽)𝜇𝜇𝑘𝑘 + (1 − 𝛽𝛽)𝜈𝜈𝑘𝑘)
𝑓𝑓(𝑧𝑧𝑘𝑘)
𝑓𝑓′(𝑥𝑥𝑘𝑘) , 𝑘𝑘 = 0,1,2,⋯ ,

 

In Tables 6 and 7, an initial estimate close to the solution 𝜂𝜂 will be taken to compare the results obtained. 

Table 6. Numerical performance of iterative methods in nonlinear equations for 𝑥𝑥0 ≈ 𝜉𝜉 (1/2) 

Function Method |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘|  |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations  ACOC Time 
𝑓𝑓1 M6(−5) 3.2293 × 10−41  1.10674 × 10−244 3  6.2137 0.05451 

𝑥𝑥0 = 0.8 MN 1.7526 × 10−80  7.0977 × 10−160 7  2.0000 0.09936 
 MO 1.3807 × 10−79  2.5820 × 10−316 4  4.0000 0.06377 
 MJ 1.2735 × 10−79  1.8607 × 10−316 4  4.0000 0.12055 
 CMT 7.1089 × 10−40  1.3002 × 10−235 3  6.0389 0.05087 

 

Table 7. Numerical performance of iterative methods in nonlinear equations for 𝑥𝑥0 ≈ 𝜉𝜉. (2/2) 

Function Method |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘|  |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations  ACOC Time  
𝑓𝑓2 M6(−5) 3.1867 × 10−73  2.5776 × 10−436 3  6.067 0.08132  

𝑥𝑥0 = −0.5 MN 2.2370 × 10−88  1.2994 × 10−175 7  2.0000 0.07574  
 MO 1.2311 × 10−86  1.8457 × 10−344 4  4.0000 0.05218  
 MJ 3.2218 × 10−88  7.1392 × 10−351 4  4.0000 0.06462  
 CMT 4.5277 × 10−44  8.5943 × 10−261 3  6.0180 0.06042  
𝑓𝑓3 M6(−5) 2.3575 × 10−33  1.17534 × 10−194 3  6.2017 0.05984  

𝑥𝑥0 = 1.9 MN 6.5178 × 10−70  4.7680 × 10−138 7  2.0000 0.07021  
 MO 1.2196 × 10−74  2.7409 × 10−295 4  4.0000 0.08726  
 MJ 1.6662 × 10−74  9.6986 × 10−295 4  4.0000 0.06974  
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 CMT 3.1448 × 10−36  1.0087 × 10−211 3  6.0384 0.08516  
𝑓𝑓4 M6(−5) 9.3647 × 10−54  4.5613 × 10−321 3  6.0247 0.08440  

𝑥𝑥0 = 1.7 MN 9.7673 × 10−53  3.1751 × 10−105 6  2.0000 0.13373  
 MO 5.4549 × 10−98  4.0911 × 10−391 4  4.0000 0.07875  
 MJ 7.8331 × 10−26  9.6803 × 10−103 3  4.0208 0.07885  
 CMT 6.9953 × 10−55  5.5267 × 10−328 3  6.0235 0.08172  
𝑓𝑓5 M6(−5) 1.1450 × 10−57  7.4011 × 10−342 3  6.0454 0.06332  

𝑥𝑥0 = 1.3 MN 4.6719 × 10−54  8.6338 × 10−107 6  2.0000 0.07306  
 MO 3.4861 × 10−28  3.0303 × 10−110 3  4.0043 0.05021  
 MJ 3.4529 × 10−28  2.9109 × 10−110 4  4.0043 0.06760  
 CMT 4.4257 × 10−57  5.4482 × 10−338 3  6.0028 0.05720  

In Tables 6 and 7, the initial approximation 𝑥𝑥0 ≈ 𝜂𝜂  has been considered. It is observed that Newton’s method 
requires the largest number of iterations for all equations, which was expected due to its quadratic order of 
convergence. Jarratt’s and Ostrowski’s methods exhibit similar behavior with respect to the number of iterations. 
The M6(−5) performs three iterations for all equations, as do the other seventh-order methods. Furthermore, the 
sixth-order methods, including M6(−5), yield similar results for the values of |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| and |𝑓𝑓(𝑥𝑥𝑘𝑘+1)|.  

Table 8. Numerical performance of iterative methods in nonlinear equations for 𝑥𝑥0 ≈ 10𝜉𝜉.  (1/2) 

Function Method |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations ACOC Time 
𝑓𝑓1 M6(−5) 1.2871 × 10−95 4.3603 × 10−508 5 6.0085 0.08636 

𝑥𝑥0 = 8.0 MN 2.9167 × 10−59 1.9657 × 10−117 10 2.0000 0.10010 
 MO 2.3390 × 10−29 2.1262 × 10−115 5 3.9947 0.07894 
 MJ 1.6725 × 10−31 5.5358 × 10−124 5 3.9964 0.09117 
 CMT 1.4919 × 10−17 1.1107 × 10−101 4 5.5594 0.06457 
𝑓𝑓2 M6(−5) 3.4182 × 10−54 3.0512 × 10−317 14 5.9126 0.32615 

𝑥𝑥0 = −5.0 MN 2.8569 × 10−68 8.9501 × 10−134 22 2.0000 0.31122 
 MO 4.4511 × 10−55 1.7146 × 10−215 10 4.0000 0.27329 
 MJ 2.8811 × 10−46 3.1665 × 10−180 10 3.9998 0.24388 
 CMT 1.6478 × 10−53 3.3397 × 10−313 9 5.9922 0.27125 

Table 9. Numerical performance of iterative methods in nonlinear equations for 𝑥𝑥0 ≈ 10𝜉𝜉.  (2/2) 

Function Method |𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘| |𝑓𝑓(𝑥𝑥𝑘𝑘+1)| Iterations ACOC Time 
𝑓𝑓3 M6(−5) 2.5266 × 10−99 0 13 5.9980 0.29081 

𝑥𝑥0 = 19.0 MN 4.2005 × 10−67 1.9803 × 10−132 28 2.0000 0.28778 
 MO 5.3344 × 10−78 1.0032 × 10−308 13 4.0000 0.24844 
 MJ 6.3608 × 10−65 2.0597 × 10−256 13 4.000 0.26074 
 CMT 4.3124 × 10−23 6.7067 × 10−133 11 5.8435 0.22709 
𝑓𝑓4 M6(−5) 3.4438 × 10−71 1.1281 × 10−425 4 6.0066 0.12779 

𝑥𝑥0 = 17.0 MN 2.2233 × 10−67 1.6452 × 10−134 8 2.0000 0.13033 
 MO 2.9920 × 10−91 3.7029 × 10−364 5 4.0000 0.12303 
 MJ 5.0866 × 10−77 1.7214 × 10−307 5 4.0000 0.12738 
 CMT 1.6918 × 10−72 1.1057 × 10−433 4 6.0061 0.12369 
𝑓𝑓5 M6(−5) 2.3562 × 10−53 5.6216 × 10−316 6 5.9305 0.15132 

𝑥𝑥0 = 13.0 MN 6.9556 × 10−56 1.9137 × 10−110 13 2.0000 0.14343 
 MO 7.7210 × 10−73 7.2918 × 10−289 7 4.0000 0.12614 
 MJ 7.2577 × 10−73 5.6821 × 10−289 7 4.0000 0.16738 
 CMT 2.4872 × 10−67 1.7165 × 10−399 6 5.9970 0.12466 
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The results show that the method M6(−5) stands out for achieving high levels of numerical accuracy in just 
a few iterations. In all cases, it attains residuals close to zero and extremely small differences between iterations 
(up to 10−99), which indicates high stability and an excellent approximation to the root. Moreover, the obtained 
ACOC remains close to 6 in all experiments, thus confirming the theoretical order of convergence of the method. 

In the previous tables, a comparison of the methods has been made in terms of ACOC, errors, and execution 
time. Now, the Ostrowski efficiency index (Ostrowski, 1960) will be used, which is defined as 

𝐸𝐸𝐸𝐸 = 𝑝𝑝1/𝑑𝑑, 

where 𝑝𝑝 is the order of convergence of the method and 𝑑𝑑 is the number of functional evaluations performed. 
The Ostrowski efficiency index is useful because it helps avoid artificial accelerations in iterative methods. It has 
been demonstrated that the family M6(𝛼𝛼) has a convergence order of 𝑝𝑝 = 6 and involves a total of four functional 
evaluations — three evaluations of the function 𝑓𝑓 at the points 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘, and 𝑧𝑧𝑘𝑘, and one evaluation of its derivative 
𝑓𝑓′at the point 𝑥𝑥𝑘𝑘. Therefore, based on the above information, the Ostrowski efficiency index is 

𝐸𝐸𝐸𝐸 = 61/4 ≈ 1.5650845801. 

Table 10 presents a comparison of the Ostrowski efficiency index of the family M6(𝛼𝛼) with the Newton, 
Ostrowski, Jarratt, and CMT methods. 

Table 10. Comparison of the efficiency index. 

Method Functional evaluations (𝑑𝑑) Order (𝑝𝑝) 𝐸𝐸𝐸𝐸 
M6(𝛼𝛼) 4 (3 𝑓𝑓, 1 𝑓𝑓′) 6 61/4 ≈ 1.5651 

MN 2 (1 𝑓𝑓, 1 𝑓𝑓′) 2 21/2 ≈ 1.4142 
MO 3 (2 𝑓𝑓, 1 𝑓𝑓′) 4 41/3 ≈ 1.5874 
MJ 3 (2 𝑓𝑓, 1 𝑓𝑓′) 4 41/3 ≈ 1.5874 

CMT 4 (3 𝑓𝑓, 1 𝑓𝑓′) 6 61/4 ≈ 1.5651 
 
The Kung–Traub conjecture (Kung & Traub, 1974) states that the convergence order of a memoryless 

iterative method with 𝑑𝑑 functional evaluations per iteration is less than or equal to 2𝑑𝑑−1 . When this bound is 
reached, the method is called optimal. Therefore, the theoretical efficiency frontier for the M6(𝛼𝛼) family is 24−1 =
8 ; since this does not match the actual convergence order 𝑝𝑝 = 6, the family is not optimal. 

When compared with the previous methods, the M6(𝛼𝛼) family proves to be more efficient than Newton’s 
method and exhibits the same efficiency index (EI) as the CMT method. However, the Ostrowski and Jarratt 
methods have a slightly higher EI, which is to be expected since they are optimal methods. Although the proposed 
family is not optimal according to the Kung–Traub criterion, its convergence and stability properties make it a 
competitive option for high-precision computations. 
 

5. Conclusions 
 
In this work, a new iterative family has been developed to solve nonlinear equations. This family was 

constructed from the fourth-order uniparametric scheme proposed by Artidiello (2014), to which a third step based 
on the work of Moscoso-Martínez et al. (2023) was added. It was demonstrated that the new family for solving 
nonlinear equations has an order of convergence of 6; thus, the third step increases the convergence order by 2.  

The research results inform the design of high-order iterative schemes, demonstrating that incorporating an 
adaptive third step can increase the order of convergence without significantly increasing computational cost. This 
reinforces the relevance of parameterized families for the construction and analysis of new rational operators, 
particularly through the combined use of tools from complex dynamics. 

In the dynamic analysis of the family for solving the nonlinear equation, the rational operator was obtained 
using the polynomial 𝒑𝒑(𝒙𝒙) = (𝒙𝒙 − 𝒂𝒂)(𝒙𝒙 − 𝒃𝒃) and a Möbius transformation, which made it possible to determine 
its fixed and critical points. Through the parameter planes, the regions of the complex plane that define the values 
of the parameter α for which the methods of the family are stable have been identified. In the dynamical planes, 
the different basins of attraction are shown, with bold italic alpha values that generate both stable and unstable 
methods. 
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Numerical experiments confirm that, for specific parameter values, the proposed family outperforms 
classical methods such as Newton, Ostrowski, Jarratt, and CMT in both efficiency and accuracy, while 
maintaining a high order of convergence even under initial conditions far from the root. Overall, the results 
demonstrate the robustness, stability, and applicability of the new iterative family, thereby consolidating it as an 
effective tool for the numerical analysis of nonlinear equations. The proposed family achieves an appropriate 
balance between accuracy and efficiency, as indicated by the Ostrowski efficiency index (EI ≈ 1.565) and the 
reduced number of functional evaluations per iteration. Moreover, the robustness analysis based on mesh-grid 
convergence percentages supports its practical adoption in scientific and engineering problems that require global 
stability and rapid convergence. 

The iterative family was designed for solving nonlinear equations; however, it can be extended to the 
multidimensional case by adopting the corresponding notation. Therefore, one future research direction is to 
determine whether the order of convergence is preserved in the multidimensional setting. Additionally, a stability 
analysis could be performed using tools from fundamental dynamics, such as parameter lines and dynamical 
planes in the real plane. 
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