Studies

Article

Design and analysis of a new iterative family for solving
nonlinear equations

Andhy Diaz

Universidad de Oriente, El Salvador, andhy.diaz@univo.edu.sv
Citation: Diaz, Andhy. (2025). Design

and analysis of a new iterative family Abstract: This article addresses the problem of improving the convergence order and
for solving nonlinear equations. stability of iterative methods for solving nonlinear equations. The main objective is to
Proceedings of the 2025 Academy of design a new multipoint iterative family with sixth-order convergence and to analyze both

Latin American Business and
Sustainability Studies (ALBUS), San
Miguel, El Salvador.

its convergence behavior and complex dynamics. The methodology combines the
theoretical analysis of the convergence order, the derivation of the associated rational
operator, and the use of complex dynamics tools such as stability surfaces, parameter

https://doi.org/10.70469/ALBUS.09 . . ) .
planes, and dynamical planes. Numerical experiments conducted on nonlinear test
BY

equations confirm the results obtained from the convergence and stability analysis. The

Copyright: © with the authors. This proposed method achieves high accuracy in few iterations, maintaining the Approximate
Open Access article is distributed under Computational Order of Convergence (ACOC) around six and exhibiting competitive
the terms and conditions of the Creative  efficiency compared to classical methods such as Newton, Ostrowski, Jarratt, and CMT.

Commons Attribution (CC BY 4.0). The conclusions highlight the robustness of the family with respect to initial conditions.

The findings have theoretical implications for the design of high-order iterative methods
and practical implications for solving scientific and engineering problems more
efficiently.

Keywords: complex dynamic, multi-step iterative methods, nonlinear equations, stability.

1. Introduction

To solve problems in science and engineering, it is common to formulate a nonlinear equation or a system
of nonlinear equations, depending on the number of variables or the specific problem conditions. This type of
equation arises in chemical processes, astronomical applications, polynomial interpolation, and the discretization
of one-dimensional boundary value problems, among others. However, due to their nonlinear nature, obtaining
exact solutions through traditional algebraic techniques is often highly complex or even unfeasible. In such cases,
it becomes necessary to resort to iterative methods, which allow the solution to be approximated from an initial
estimate and generate a sequence of values that, under certain conditions, may converge to the exact solution.

The resolution of nonlinear equations and systems by iterative methods has been, and continues to be, a
recurring topic in numerical analysis, as evidenced by numerous publications (Artidiello, 2014; Moscoso-
Martinez et al., 2023; Ortega & Rheinboldt, 1970; Traub, 1964), among others. One of the most well-known
iterative methods for solving a nonlinear equation f(x) = 0 is Newton’s method, which is given by the following

expression:
f ()

Xg+1 = Xk — f,(xk)’

k=012,

Nevertheless, this method exhibits limitations that motivate the search for new schemes with improved
convergence properties.

The present research proposes a multipoint iterative family of order six for solving nonlinear equations.
Because the proposed family depends on a parameter, the method's behavior may vary significantly with its value.
For this reason, a convergence analysis is carried out to determine the method's order as a function of this
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parameter. Furthermore, a dynamical analysis is incorporated to identify the most stable and efficient elements of
the family, thereby facilitating its application in numerical tests with nonlinear functions of greater complexity.

2. Literature Review

The resolution of nonlinear and linear systems of equations is a central problem in numerical analysis, with
applications in physics and chemistry, boundary value problems, and polynomial interpolation. Since obtaining
exact solutions is often intractable, numerous iterative methods have been developed with different structures and
convergence orders.

In recent literature, several multipoint schemes of varying order have been introduced. Singh (2018)
designed a Steffensen-type method of order five for nonlinear systems, while Chicharro et al. (2019) proposed a
biparametric family of order six, combining Newton’s and Traub’s methods. More recently, Cordero et al. (2024)
introduced an innovative technique that increases the order of convergence by three without relying on Jacobian
matrices, demonstrating strong efficiency in biological models.

The pursuit of higher orders has motivated the development of more advanced schemes. Shams et al. (2022)
constructed a three-step family with order eight, and Wang (2021) also proposed a multipoint method for nonlinear
systems, achieving order eight. On the other hand, Tao & Madhu (2019) designed a scheme with order sixteen,
although at a high computational cost. It is worth noting, however, that not all these studies include complex
dynamics or stability analysis. For instance, Wang (2021), despite achieving order eight, did not address stability,
thereby limiting understanding of the scheme's global behavior.

In recent years, parametrized iterative families have been developed that integrate tools from fundamental
and complex dynamics to characterize the stability of fixed points and the structure of basins of attraction
(Khirallah & Alkhomsan, 2022). This work highlights that dynamic analysis is an essential complement to
classical convergence studies, as it provides insights into stability regions and chaotic behaviors.

From this overview, it is evident that most existing methods exhibit convergence orders between three and
six. Moreover, complete dynamical studies are not always included. Consequently, there is a clear research gap
for designing schemes that combine high convergence order with a comprehensive stability analysis. The iterative
family proposed in this work addresses this gap by introducing a sixth-order multipoint scheme supported by
theoretical convergence analysis and complex dynamical study.

3. Material and Methods

The research methodology adopted in this work is both theoretical and applied. A new step within an iterative
family is proposed to increase the order of convergence without significantly raising the computational cost. In
the theoretical phase, concepts and theorems from numerical analysis will be employed to rigorously establish the
order of convergence of the new scheme. Likewise, specific conditions on the parameter under consideration will
be analyzed to simplify the method's general expression.

The theoretical order of convergence will be contrasted with the approximate computational order of
convergence (ACOC), following the proposal of Cordero and Torregrosa (2007). To analyze the method's
dynamic behavior, a wide range of initial conditions will be considered. The corresponding orbits will be
constructed from these, and their final states will be identified. This analysis will allow the generation of basins
of attraction, which illustrate the regions of the plane where the method exhibits greater stability. A predefined
error tolerance and a maximum number of iterations will define the visualization criterion. In addition, the effects
of the parameter on the method's stability and rate of convergence, as well as its interactions with the different
fixed points, will be examined.

The applied research will corroborate theoretical results. For this purpose, the scheme will be applied to low-
order nonlinear systems and to systems with exponential, logarithmic, and trigonometric equations. MATLAB
will be used for computational calculations to verify the theoretical results obtained. Both MATLAB and
Mathematica will be employed to generate graphs.

4. Results
4.1 Development of the New Iterative Family

The starting point is the fourth-order iterative method proposed by Artidiello (2014), whose expression is
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It is intended to improve this method; for this purpose, a third step is proposed in Moscoso-Martinez et al.
(2023). By incorporating this third step into the method, a new triparametric iterative scheme is obtained.

f (%)
=x, - , k=012,
T T )
i)
= ye—(1+2 ,
IZk Vi — (1+ 2s;) 100
f (k)
ka+1 =z — (@ + Bsi +vty) )
fo) f () . - . .
where s;, = and t;, = , where f[x), ¥i] is the divided difference operator defined in (Ortega &
flxp) flxpy ]

Rheinboldt, 1970), with e, B and y being arbitrary parameters.

4.2 Convergence Analysis of the New Family

This section presents the convergence analysis of the new triparametric iterative family. Furthermore, a
strategy is proposed to reduce the triparametric scheme to a uniparametric one to accelerate convergence.

Theorem 1. Let f: C € R = R be a sufficiently differentiable function on an open and connected set C, and let
& € C be a root of f(x) such that f' is continuous at ¢ and f'(§) # 0. Then, if x, is an initial guess sufficiently
close to & the members of the family converge to & with order of convergence four for the error equation being

exs1 = —(c2(5¢2 — c3)(a +v — Deg + 0(ep),

1 £D© r}

1776) =23 ..
INEGON 3,

where ey = x;, — & and ¢; =
Proof. Expanding f(x;) and f ' (xk) around &, we obtain

F0) = @ +F ©ew+ i/ ek + -+ 5 [ (el + 0(e])

@, 17

; . 510 7)
20 e g O

=1 (ek + ce2 + c3ep + cuef + csep + coel + O(e,Z)).

=f©® <ek +

1 _ £ " 1 m 2 1 ) 5 6
Fread = 1)+ [T (e + 5 f7 (e + -+ o f7(Dex + O(ex)

, ") 176 1™
= (&) (1 + 6 ey +§f’(f) e? ...+a 6 ep +0(e,?)>
= f'(&)(1 + 2c e, + 3cze? + 4cyep + Scsei + 6¢cgep + 0(ef)),
where ¢; = %%] =23,

Therefore, using f (x;) and f’(xk), the first step of the family is:
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Ve — & = cpef + (—2¢2 + 2c3)ep + (4¢3 — Tcycs + 3c,)ep
+(—8c4 + 20cZc; — 6¢2 — 10c,c, + 4cs)e + (16¢5 — 52¢3 ¢y
+28c2c, — 17¢5¢4 + ¢,(33¢2 — 13c5) + 5¢6)eg + O(ef).

Using the expression of y, the expansion corresponding to f(yy) is:

fOi) = f'(€)(cef +2(=cF + c3)eii + (5¢3 — Tcpc3 + 3cy)er — 2(6¢5
—12c2c5 + 3¢2 + 5c,04 — 2¢5)ep + (28¢5 — 73c3c; + 34cic,
—17c¢5c4 + ¢,(37¢2 — 13c¢5) + 5¢¢)ef + 0(el)).

This implies that, with f(x;), f'(xx), and f(y;), the second step of the family is given by

7 — & = (5¢3 — cyc3)ep — 2(18¢) — 16¢5¢2 + 40y + C2)ef;
+(170c¢3 — 262c5¢3 + 48c,4¢2 + (66¢2 — 3cg)c, — Tesc)ef + O(ef).

The expansion of f(z;,) is

f(z) = £ (563 — cc5)eft — 2(18cf — 16¢5¢3 + cucy + c3)ef
+(170c¢3 — 262c5¢3 + 48c,4¢2 + (66¢2 — 3cg)c, — Tezcq)ef + O(el)).
The error equation obtained by using f(xy), f'(xx), f Vi), and f(z;) is

ers1 = —(c2(5¢ —c3)(a +y — 1)eg + (c3(46a — 56 + 41y — 36)
tc3c(—34a+ B —33y +32) +2c2(a+y — 1) + 2c,c4(a +y — 1))ep
+(c5(—262a + 618 — 206y + 170) + c5¢3(345a — 478 + 299y — 262)
+2c4c5(—26a + f — 25y + 24) + Tcgea(a +y — 1)
+c,(c2(=73a + 4B — 69y + 66) + 3cs(a + v — 1)))ef + O(e)).

Which completes the proof.
Theorem 2. Let f:C € R — R be a sufficiently differentiable function on an open and connected set C, and let
& € C be aroot of f(x) such that f' is continuous at & and f'(§) # 0. Then, if x, is an initial guess sufficiently

close to & the members of the family converge to & with an order of convergence of six whenever § = 1 + a and
y = 1 — a with the error equation being

ers1 = C2(5¢5 — C3)((5 + a)c; — C3)31§ + 0(e)).

Proof. Itis possible to increase the order of convergence of the scheme; to do so, the terms ejf and e In the
error expression, the expression must be canceled. Therefore, the parameters must satisfy the following system of
equations.

a+y=1,

460 — 58 + 41y = 36,
—34a+f —-33y =-32.

By manipulating the equations, the following expressions are obtained:

B=14caandy =1-—a,
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and substituting the parameters, the new error equation is obtained

ex+1 = C2(5¢5 — C3)((5 + a)c; — C3)31§ +0(ep).

Which proves the statement. O

From Theorem 2, it follows that if only the parameter « is kept, the new three-parameter iterative family
reduces to a one-parameter family with order of convergence six, for any real or complex values of the parameters,
provided that the condition is satisfied. The previous analysis has been developed assuming that ¢ is a simple root.
However, the family can be extended to the case of multiple roots by relying on the modified Newton’s method
for roots with multiplicity m , whose expression is given by

f )

X, =x,—m
fort k f’(xk)’

so that the order of convergence can be preserved without requiring significant modifications to the
expression of the proposed family.

4.3 Stability analysis

This section focuses on the study of the dynamic properties of the rational operator determined by the
iterative family. The dynamic analysis provides important information on the stability of each family member,
depending on the initial approximations used. A rational operator will be obtained to conduct the analysis, thereby
enabling the construction of parameter spaces and dynamical planes. These representations in the complex plane
allow us to observe the behavior of the method as a function of the parameter o and to study the basins of
attraction, fixed points, and attractors. The rational operator of the family can be constructed for any nonlinear
function f(x). In this case, it will be built from a quadratic polynomial, and the results obtained will then be
extrapolated to functions of greater complexity.

Theorem 3. Let p(x) = (x — a)(x — b) be a generic polynomial with roots a,b € R. Then, the rational operator
0,(2) associated with the family and applied to p(x) is

z%(z%2 + 4z + 5)M(2)
(5z2 4+ 4z+ 1)N(2)

0q(2) =

where a € C is an arbitrary parameter, and moreover M(z) and N(z) are polynomials depending on the
parameter a € C.

Proof. We consider the generic polynomial, p(x) = (x — a)(x — b), where a,b € R are its roots. By
applying p(x) to the family, we obtain a rational operator R,(x, @, a, b) which depends on the roots of the
polynomial p(x). To eliminate the dependence on the roots, we consider the Mdbius transformation defined as

zZ—a
z—b

H(z) =
which satisfies H(c0) = 1, H(a) = 0 and H(b) = oo. Therefore, we obtain

z%(z% + 4z + 5)M(2)
(522 +4z+ 1)N(2)’

0,(z)=(H°RoH")(2) =

where the polynomials have been defined as

M,(z) =a+5+ (34 + 4a)z + (98 + 5a)z? + 15323 + 149z*
+922° + 372° + 927 + 28,

Ng(z) =1+ 9z + 372% + 9223 + 149z* + 1532° + (98 + 5a)z°
+(34 +4a)z” + (5 + a)z8.
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Since the factor z° is involved in the operator 0,(2), it is confirmed that the iterative family has an order
of at least six in the case of quadratic equations.

Once the rational operator 0, (z) has been obtained, it is possible to determine its fixed points and to classify
them by stability.

Proposition 1. Considering the equation 0,(z) = z the results obtained are:
e x = 0and x = o are fixed points of 0,(x) for any a € C.
o x = 1is a strange, fixed point.
o The roots of the polynomial

ko(t) =1+ 14t + 92t% + 377t% + 1079t* + (2263 — 5a)t° + (3528 — 24a)t®
+(4088 — 42a)t” + (3528 — 24a)t® + (2263 — 5a)t? + 1079t1°
+377t1 + 9212 + 14¢13 + ¢

denoted by ex;(a) with i = 1,2, ,14, are strange, fixed points of the operator Oy (z).

To analyze the stability of the fixed points, one obtains

—4x5(1+ )11 + x)(1 + x + x2)Q(x)
(—1—3x —4x2 = 3x3 + (—1 + 2a)x*)?(N(x))?

0'a(x) =

where has the polynom

Q) =-71+x)*(A+x+x)3(5 + 4x + 5x2) + 2a(1 + x)*(1 + x + x?)
+2a(1 4+ x)%(1 + x + x2)(35 + 46x + 53x2 — 22x3 — 20x* — 22x°>
+53x% + 46x7 + 35x%) + 2a%x(4 + 25x + 72x2 + 20x3 + 2x* — 66x°
+2x° + 20x7 + 72x8 + 25x° + 4x10).

Proposition 2. The points x = 0 and x = oo are superattractors for all a € C. The extraneous fixed point x = 1
satisfies the following:

o [f|1445 + 25a| > 6144, then x = 1 is an attractor. Moreover, x = 1 cannot be a superattractor.
o Jf|1445 + 25a| < 6144, then x = 1 is a repeller.
o [f|1445 + 25a| = 6144, then x = 1 is parabolic.

Let R, be a rational operator determined by an iterative family, and let z, be a fixed point of R,,. Let a €
C be a parameter of the iterative family. Then, the function h: C — C defined by h(a) = R, (2, @) is called the
stability function.

To numerically analyze the stability function, stability diagrams are used. These diagrams represent the
surface generated in space by the function ¢(a) = |Ry, (2o, @)|. On the Z-axis, the values of | R;,(z, @) | are plotted,
while on the XY-plane, the real and imaginary parts of a € C are represented. Through these visualizations, one
can identify the regions where z, acts as a repulsive or attractive strange fixed point. The regions where the strange
fixed point is repulsive are colored in gray, and those where it is attractive are shown in another color.
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Figure 1. Stability surface for a strange, fixed point x = 1. Region of the complex plane:
[—450,400] x [—450,400].

s S 1/ 00 4
50 -,J ],-‘ -400 e
100 — / -200 e
150 ~— 200 -2J
200 oo

Figure 2. Stability surfaces for strange, fixed points ex;(a) with i = 1,2,---,14. Region of the complex
plane: [0,200] x [-150,150] and [—450, 400] x [—450,400].

In the following result, an analysis of the critical points of the rational operator is carried out.

Proposition 3. The critical points of the rational operator are x = 0 and x = oo, while the free critical points are
x = —1 and the roots of the polynomial

h(t) = 150 + 30« + (1155 + 133)t + (3908 + 192)t? + (7489 — 9a)t3 + (9276 — 92a)t*
+(7489 — 9a)t5 + (3908 + 192)t® + (1155 + 133)t7 + (150 + 30)t?,

and the roots of the polynomial, which are denoted by cr;(a) fori =1,2,---,8.
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The parameter space is constructed by meshing the complex plane, where each point corresponds to a value
of the parameter @ € C. For each value a, the free critical point cr;(@) is taken as the initial guess. The mesh
point is colored red if the method converges to a root; otherwise, it is colored black. To draw the parameter planes,
a mesh of 1000x1000 points, a tolerance of 10™3, and a maximum of 100 iterations have been considered. To
construct the parameter planes, the code proposed by Chicharro et al. (2013) is used.

Im{z}
Im{z}

Re{z} Re{z}

300

200

100

Im{z}
Im{z}
o

-100

-200

-300 -200 -100 0 100 200 =0 300 200 100 0 100 200
Re{z} Re(z}
Figure 3. Parameter planes for the free critical points. Mesh size: 1000 x 1000; tolerance: 1073;
maximum iterations: 100; color map: red (convergent), black (non-convergent); region of the complex
plane: [—350, 250] x [—300,300].

The dynamical plane is a tool from complex dynamics that provides additional information beyond that
obtained from stability surfaces and parameter planes. The dynamical plane is constructed similarly to the
parameter plane: a grid of the complex plane is considered, and each point x, € C represents an initial estimate
for the iterative method. Depending on the convergence behavior, each point is represented by a specific color.
For constructing the dynamical planes, the code proposed by Chicharro et al. (2013) is used. For the construction
of the dynamical planes, values of the parameter a belonging to stable and unstable regions in the parameter
planes are selected. A mesh of 1000 x 1000 points, a maximum of 100 iterations, and a tolerance of 1073 are
used.
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Im{z}
Im{z}

Re{z}

a) a=0

Re{z}

c) a=-5 1445

Figure 4. Dynamical planes associated with stable values. Mesh size: 1000 X 1000; tolerance: 1073;
maximum iterations: 100.

. 5 .

In Figure 4, the values @ = 0,—1, -5, and — % have been considered. It can be observed that for a =
0, —1, and —5, two basins of attraction appear: that of x = 0, represented in orange, and that of x = oo represented
in blue, thus yielding a simple dynamic behavior for these parameters. However, when ¢ = — %:5 , black regions

appear, which may indicate convergence issues of the method, even though o lies within a convergence region in
the parameter planes.
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Im{z}

-8 5 -4 3 2 1 1] 1 2 3

. ) Rs{z}’ )
v v 2 3 with unstable values. Mesh size: LUUU X LUUU; tolerance: LU
c) a=300 d) a=-200

R 5 -4 3

2 i
Re{z}

maximum iterations: 100.

In Figure 5, when taking @ = 60, three basins of attraction can be observed: that of x = 0, that of x = oo and
a black region indicating non-convergent zones. For &« = 150, four basins of attraction appear: the green one,
which is associated with the strange fixed point x = 1, and the black one, which indicates slow convergence.
When a = 300, the green region becomes considerably larger and is associated with the strange fixed point x =
1. For a = —200, black regions are observed, indicating that the method is not stable for this parameter.

To quantify the regions observed in the dynamical planes, a color-based analysis was performed on the inner
frame of each figure. The tones associated with convergence (blue and orange) were grouped together, while the
remaining colors (including green, red, and black) were classified as non-convergent regions. This provides an
approximate measure of the percentage of mesh points that converge to a root versus those that diverge or remain
undefined.

Table 1. Percentage of mesh classified by convergence.
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a Convergence (%) Non-convergence (%)
60 71.47 28.53

150 40.60 59.40

-200 36.98 63.02

300 27.76 72.24

When considering the value of @ = 60, it is observed that 71.47% of the grid points converge to the roots of
the polynomial. However, when @ = 150, —200, 300, there is a higher percentage of initial grid points for which
the method does not converge. This is due to the presence of other basins of attraction associated with the strange
fixed points.

4. Discussion

In this section, several numerical tests will be carried out to confirm the validity of the results related to the
convergence and stability of the family M6(a). To perform the numerical tests, one value of the parameter o that
generates a stable method and another value of o that generates an unstable method will be considered, and each
method will be applied to ten nonlinear equations. The expressions of these equations and their respective roots
are shown in Table 2.

MATLAB 2022b is used for numerical tests, with variable-precision arithmetic with 500 mantissa digits.
The stopping criterion is established as | f (xx41)] < 1072 or |x;,1 — x| < 107190, with a maximum number
of 30 iterations. The approximate computational order of convergence (ACOC) will be obtained to verify the
theoretical order of convergence. If the method does not converge within 30 iterations, the ACOC is indicated as
“nc”, and if the ACOC fails to stabilize, the symbol “-” is used.

Table 2. Nonlinear test equations.

Nonlinear equations Roots
fi(x) =cos(x) —2x2+1=0 & ~ 0.90036
L) =2+@x—-1)3+e" =0 § ~ —0.48322

f3(x) = xe* +cos(x) —3x2—-2=0 & ~ 1.95874
fa(x) = arctan(x®) +x2+2x—-4=0 ¢~ 178793
fo(x) =log(x*+2)—x3+1=0 & ~ 1.32435

For the numerical experiments, the parameters @ = 0 and @ = 300 are chosen, where the former simplifies
the rational operator and also provides a simple dynamical behavior, while the latter, according to Figure 5,
exhibits an unstable behavior.

Table 3. Numerical results of M6(0) on nonlinear equations (1/2).

Function X [xpe1 — Xkl |f (ka1 Iterations ACOC Time
Xo ® &
fi 0.8 1.0243 x 1073* 5.3686 x 107204 3 6.0634 0.06392
—-0.5 8.5634 x 107% 1.5786 x 1073 3 5.9952 0.09636
2
fs 1.9 2.1979 x 107%° 8.9641 x 107170 3 6.0769 0.07919
f. 1.7 2.6226 x 10755  1.1284 x 107330 3 6.0345 0.09936
4
f: 1.3 4.5353 X 10751 4.2986 x 107301 3 6.0119 0.07426
5
Xxq = 10&

Table 4. Numerical results of M6(0) on nonlinear equations (2/2).
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Function  x, EE If (peq1)l Iterations ACOC  Time
fi 8.0 1.6369 x 107 8.9396 x 10739 5 5.9955 0.08241
fo —5.0 15400 x 1073*  2.1337 x 107198 15 5.9537 0.31003
fs 19.0 7.9402 x 1073 0 14 5.9996 0.25701
fa 17.0 2.0179 x 10773 2.3415 x 107*3° 4 6.0089 0.11272
fs 13.0  1.6049 X 1072% 84429 x 10716¢ 6 5.9010 0.11082

With @ = 0, the iterative family shows a highly stable and accurate performance, confirming an approximate
convergence order of six in all analyzed cases. For initial conditions close to the root, the method converges in
only three iterations, with minimal errors and residuals, demonstrating high numerical precision and low
computational cost. Even when the initial point is farther from the root, the method preserves its stability and the
same convergence order. However, it requires more iterations (4-15) and slightly longer execution times. Overall,
the results confirm that the value & = 0 provides an optimal performance within the family, combining efficiency,
speed, and robustness with respect to variations in the initial condition.

Table 5. Numerical results of M6(300) on nonlinear equations.

Function X [xp41 — Xkl |f (1)l Iterations ACOC Time
Xo ® ¢

fi 0.8 7.4561 x 10722 4.7700 x 107125 3 6.1290 0.06504
f -0.5 1.4314 x 10753  1.9739 x 107315 3 5.9922 0.09011
fs 1.9 2.5029 x 10789 0 4 5.9997 0.09704
f 1.7 7.3766 X 107*°  9.9462 x 107236 3 6.0392  0.09768
4

fs 1.3 3.0434 X 10738 2.5510 x 107222 3 6.0206 0.06722

xq = 10&

fi 8.0 nc nc nc nc nc
1 -5.0 nc nc nc nc nc
f3 19.0 nc nc nc nc nc

fa 17.0 7.6319 X 1077*  1.2198 x 107439 4 5.9973 0.12416
fs 13.0 nc nc nc nc nc

When comparing the results obtained for ¢ = 300 with those for @ = 0, it is observed that the iterative
family M6(a) maintains an approximate convergence order of six and high numerical accuracy in both cases when
the initial point is close to the root . For & = 300, the method solves in three or four iterations, with errors and
residuals on the order of 10722 — 10789 and 10~12> — 10735, respectively, values comparable to those obtained
with @ = 0. However, when analyzing more distant initial conditions, the behavior differs significantly: while for
a = 0 the method remains convergent in all cases, for @ = 300 the process diverges for most of the test functions,
except for one case where it stabilizes and preserves the theoretical order. Consequently, although both parameter
values yield efficient performance near the root, « = 0 provides greater global stability, whereas a =
300 exhibits a more restrictive and unstable dynamic when the initial condition varies.

Next, a comparative analysis will be carried out between a stable method of the family M6(a) and five
iterative methods of different orders, to evaluate the numerical performance in solving nonlinear equations. The

parameter @ = —5 is chosen, since a more simplified rational operator is obtained, which is
0..(2) = 27(z?> + 4z +5)(27 + 92° + 3725 + 922* + 14923 + 15322 + 73z + 14)
-s\%) = (522 +4z+ 1)(1 + 9z + 3722 + 9223 + 149z* + 15325 + 7326 + 1427)
Thus reducing the number of strange fixed points and free critical points. Moreover, @ = —5 belongs to the
stable region in the parameter planes, and for « = —5, according to Proposition 2, the strange fixed point x = 1

is repulsive.

The iterative methods considered in this study are the following:
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e Newton’s method, denoted as NM, and its expression is
f (%)

f'Ca)’

e  The method of Ostrowski (1960), denoted as MO and defined as
Vi = Xy — f ()

] TR o)
f(xi) f (i)

fa) = 2f i) f/ ()’

xk+1 = xk - k = 0,1,2, see

ka+1 Yk — k=012,

e  The method of Jarratt (1969), denoted as MJ, and its expression is
[ 2 f(xx)

Ve =X — 5

3f'(x)’
1 f(x) <3f’(yk) + f' (%)
2f"0a) \3f' i) — ' ()

X1 = X — ), k=012

e  The sixth-order method proposed (Cordero et al., 2021), denoted as CMT, and its expression is

f(xk)
[}’k )
L=y )
e o oo vid — ()
| A B+ A= B L k012,
(M1 = 2k — B+A+Pu+ A=) k)f o) =012,

In Tables 6 and 7, an initial estimate close to the solution 7 will be taken to compare the results obtained.

Table 6. Numerical performance of iterative methods in nonlinear equations for x, = & (1/2)

Function Method [xpe1 — Xkl If (k11| Iterations ACOC  Time
fi M6(—5) 3.2293 x 10~* 1.10674 x 107244 3 6.2137 0.05451
xo = 0.8 MN 1.7526 x 10780 7.0977 x 107160 7 2.0000 0.09936
MO 1.3807 x 10~7° 2.5820 x 107316 4 4.0000 0.06377
MJ 1.2735 x 1077° 1.8607 x 107316 4 4.0000 0.12055
CMT  7.1089 x 10~*° 1.3002 x 107235 3 6.0389 0.05087

Table 7. Numerical performance of iterative methods in nonlinear equations for x, = &. (2/2)

Function ~ Method [Xp1 — Xl If (X))l Iterations ACOC  Time
£ M6(—5) 3.1867 x 10-73 2.5776 x 107436 3 6.067 0.08132
xo = —0.5 MN 2.2370 x 10788 1.2994 x 107175 7 2.0000 0.07574
MO 1.2311 x 10786 1.8457 x 107344 4 4.0000 0.05218
MJ 3.2218 x 10788 7.1392 x 107351 4 4.0000 0.06462
CMT  4.5277 x 10~** 8.5943 x 107261 3 6.0180 0.06042
fa M6(—5) 2.3575x 10733  1.17534 x 10719 3 6.2017 0.05984

xo = 1.9 MN 6.5178 x 1077° 4.7680 x 107138 7 2.0000 0.07021
MO 1.2196 x 10774 2.7409 x 1072% 4 4.0000 0.08726
MJ 1.6662 x 10774 9.6986 x 10729 4 4.0000 0.06974
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CMT  3.1448 x 10736 1.0087 x 107211 3 6.0384 0.08516

fa M6(—5) 9.3647 x 107>* 45613 x 107321 3 6.0247 0.08440

xo = 1.7 MN 9.7673 x 10753 3.1751 x 107105 6 2.0000 0.13373
MO 5.4549 x 107% 4.0911 x 10731 4 4.0000 0.07875

MJ 7.8331 x 10726 9.6803 x 107103 3 4.0208 0.07885

CMT  6.9953 x 10755 5.5267 x 107328 3 6.0235 0.08172

fs M6(—5) 1.1450 x 10757 7.4011 x 107342 3 6.0454 0.06332

xo =13 MN 46719 x 10754 8.6338 x 107197 6 2.0000 0.07306
MO 3.4861 x 10728 3.0303 x 107110 3 4.0043 0.05021

MJ 3.4529 x 10728 2.9109 x 107110 4 4.0043 0.06760

CMT  4.4257 x 10757 5.4482 x 107338 3 6.0028 0.05720

In Tables 6 and 7, the initial approximation x, = n has been considered. It is observed that Newton’s method
requires the largest number of iterations for all equations, which was expected due to its quadratic order of
convergence. Jarratt’s and Ostrowski’s methods exhibit similar behavior with respect to the number of iterations.
The M6(—5) performs three iterations for all equations, as do the other seventh-order methods. Furthermore, the
sixth-order methods, including M6(=5), yield similar results for the values of |x.; — x| and |f (X 41)].

Table 8. Numerical performance of iterative methods in nonlinear equations for x, = 10§. (1/2)

Function ~ Method [xgr1 — %kl If (rq1)l Iterations ACOC  Time
fi M6(—5) 1.2871 x107%° 4.3603 x 107508 5 6.0085 0.08636
Xo = 8.0 MN 29167 x 107 1.9657 x 107117 10 2.0000 0.10010
MO 2.3390 x 107%° 2.1262 x 107115 5 3.9947 0.07894
MJ 1.6725 x 10731 55358 x 107124 5 3.9964 0.09117
CMT 14919 x 10717  1.1107 x 107101 4 5.5594 0.06457
fa M6(—5) 3.4182x 107>* 3.0512 x 107317 14 59126 0.32615
X9 = —5.0 MN 2.8569 x 1078  8.9501 x 107134 22 2.0000 0.31122
MO 44511 x 10755  1.7146 x 107215 10 4.0000 0.27329
MJ 2.8811 x 107  3.1665 x 107180 10 3.9998 0.24388
CMT 1.6478 X 10753 3.3397 x 107313 9 59922 0.27125
Table 9. Numerical performance of iterative methods in nonlinear equations for x, = 10£. (2/2)
Function  Method [Xg11 — %] [f (xpq1)l Iterations ACOC  Time
fz M6(—5) 2.5266 x 107%° 0 13 5.9980 0.29081
xo = 19.0 MN 4.2005 x 107%7  1.9803 x 107132 28 2.0000 0.28778
MO 5.3344 x 10778 1.0032 x 107308 13 4.0000 0.24844
MJ 6.3608 x 1075  2.0597 x 107256 13 4.000 0.26074
CMT 43124 x 10723 6.7067 x 107133 11 5.8435 0.22709
fa M6(—5) 3.4438 x 10771 1.1281 x 107425 4 6.0066 0.12779
xo = 17.0 MN 2.2233 x 107%7  1.6452 x 107134 8 2.0000 0.13033
MO 2.9920 x 1079  3.7029 x 107364 5 4.0000 0.12303
MJ 5.0866 X 10777 1.7214 x 1073%7 5 4.0000 0.12738
CMT 1.6918 X 10772 1.1057 x 107433 4 6.0061 0.12369
fs M6(—5) 2.3562 x 107%% 56216 x 107316 6 5.9305 0.15132
xo = 13.0 MN 6.9556 X 107°¢ 1.9137 x 107110 13 2.0000 0.14343
MO 7.7210 x 10773  7.2918 x 107287 7 4.0000 0.12614
MJ 7.2577 x 10773  5.6821 x 107287 7 4.0000 0.16738
CMT 2.4872 x 107%7 17165 x 1073%° 6 5.9970 0.12466
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The results show that the method M6(—5) stands out for achieving high levels of numerical accuracy in just
a few iterations. In all cases, it attains residuals close to zero and extremely small differences between iterations
(up to 1079?), which indicates high stability and an excellent approximation to the root. Moreover, the obtained
ACOC remains close to 6 in all experiments, thus confirming the theoretical order of convergence of the method.

In the previous tables, a comparison of the methods has been made in terms of ACOC, errors, and execution
time. Now, the Ostrowski efficiency index (Ostrowski, 1960) will be used, which is defined as

El = pY/4,

where p is the order of convergence of the method and d is the number of functional evaluations performed.
The Ostrowski efficiency index is useful because it helps avoid artificial accelerations in iterative methods. It has
been demonstrated that the family M6(@) has a convergence order of p = 6 and involves a total of four functional
evaluations — three evaluations of the function f at the points xy, yy, and z;, and one evaluation of its derivative
f'at the point x,. Therefore, based on the above information, the Ostrowski efficiency index is

EI = 6'/* ~ 1.5650845801.

Table 10 presents a comparison of the Ostrowski efficiency index of the family M6(a) with the Newton,
Ostrowski, Jarratt, and CMT methods.

Table 10. Comparison of the efficiency index.

Method Functional evaluations (d) Order (p) El
M6(a) 4B f,1f) 6 6Y/* ~ 1.5651
MN 2(f,1fH 2 212 ~ 1.4142
MO 321,119 4 41/3 ~ 1.5874
MJ 3(2f,11H 4 41/3 ~ 15874
CMT 4(3Bf,1fH 6 6Y/* ~ 1.5651

The Kung—Traub conjecture (Kung & Traub, 1974) states that the convergence order of a memoryless
iterative method with d functional evaluations per iteration is less than or equal to 247! . When this bound is
reached, the method is called optimal. Therefore, the theoretical efficiency frontier for the M6(a) family is 2471 =
8 ; since this does not match the actual convergence order p = 6, the family is not optimal.

When compared with the previous methods, the M6(a) family proves to be more efficient than Newton’s
method and exhibits the same efficiency index (EI) as the CMT method. However, the Ostrowski and Jarratt
methods have a slightly higher EI, which is to be expected since they are optimal methods. Although the proposed
family is not optimal according to the Kung—Traub criterion, its convergence and stability properties make it a
competitive option for high-precision computations.

5. Conclusions

In this work, a new iterative family has been developed to solve nonlinear equations. This family was
constructed from the fourth-order uniparametric scheme proposed by Artidiello (2014), to which a third step based
on the work of Moscoso-Martinez et al. (2023) was added. It was demonstrated that the new family for solving
nonlinear equations has an order of convergence of 6; thus, the third step increases the convergence order by 2.

The research results inform the design of high-order iterative schemes, demonstrating that incorporating an
adaptive third step can increase the order of convergence without significantly increasing computational cost. This
reinforces the relevance of parameterized families for the construction and analysis of new rational operators,
particularly through the combined use of tools from complex dynamics.

In the dynamic analysis of the family for solving the nonlinear equation, the rational operator was obtained
using the polynomial p(x) = (x — a)(x — b) and a Mobius transformation, which made it possible to determine
its fixed and critical points. Through the parameter planes, the regions of the complex plane that define the values
of the parameter o for which the methods of the family are stable have been identified. In the dynamical planes,
the different basins of attraction are shown, with bold italic alpha values that generate both stable and unstable
methods.
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Numerical experiments confirm that, for specific parameter values, the proposed family outperforms
classical methods such as Newton, Ostrowski, Jarratt, and CMT in both efficiency and accuracy, while
maintaining a high order of convergence even under initial conditions far from the root. Overall, the results
demonstrate the robustness, stability, and applicability of the new iterative family, thereby consolidating it as an
effective tool for the numerical analysis of nonlinear equations. The proposed family achieves an appropriate
balance between accuracy and efficiency, as indicated by the Ostrowski efficiency index (EI = 1.565) and the
reduced number of functional evaluations per iteration. Moreover, the robustness analysis based on mesh-grid
convergence percentages supports its practical adoption in scientific and engineering problems that require global
stability and rapid convergence.

The iterative family was designed for solving nonlinear equations; however, it can be extended to the
multidimensional case by adopting the corresponding notation. Therefore, one future research direction is to
determine whether the order of convergence is preserved in the multidimensional setting. Additionally, a stability
analysis could be performed using tools from fundamental dynamics, such as parameter lines and dynamical
planes in the real plane.

References

Artidiello, S. (2014). Diseflo, implementacion y convergencia de métodos iterativos para resolver ecuaciones y sistemas no
lineales  utilizando  funciones peso  [PhD  thesis,  Universitat  Politécnica de  Valéncia].
https://doi.org/10.4995/Thesis/10251/44230

Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2019). A new efficient parametric family of iterative methods
for solving nonlinear systems. Journal of Difference Equations and Applications, 25(9-10), 1454-1467.
https://doi.org/10.1080/10236198.2019.1665653

Chicharro, F. I., Cordero, A., & Torregrosa, J. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and
Methods. TheScientificWorldJournal, 2013, 780153. https://doi.org/10.1155/2013/780153

Cordero, A., Leonardo-Sepulveda, M. A., Torregrosa, J. R., & Vassileva, M. P. (2024). Increasing in three units the order of
convergence of iterative methods for solving nonlinear systems. Mathematics and Computers in Simulation, 223,
509-522. https://doi.org/10.1016/j.matcom.2024.05.001

Cordero, A., Moscoso-Martinez, M., & Torregrosa, J. R. (2021). Chaos and Stability in a New Iterative Family for Solving
Nonlinear Equations. Algorithms, 14(4). https://doi.org/10.3390/a14040101

Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied
Mathematics and Computation, 190(1), 686-698. https://doi.org/10.1016/j.amc.2007.01.062

Jarratt, P. (1969). Some efficient fourth order multipoint methods for solving equations. BIT Numerical Mathematics, 9(2),
119-124. https://doi.org/10.1007/BF01933248

Khirallah, M., & Alkhomsan, A. (2022). A new fifth-order iterative method for solving non-linear equations using weight
function technique and the basins of attraction. Journal of Mathematics and Computer Science, 28, 281-293.
https://doi.org/10.22436/jmcs.028.03.06

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. J. ACM, 21(4), 643-651.
https://doi.org/10.1145/321850.321860

Moscoso-Martinez, M., Chicharro, F. 1., Cordero, A., & Torregrosa, J. R. (2023). Performance of a New Sixth-Order Class of
Iterative ~ Schemes  for  Solving  Non-Linear  Systems of Equations.  Mathematics,  11(6).
https://doi.org/10.3390/math11061374

Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic Press.
https://doi.org/10.1016/C2013-0-11263-9

Ostrowski, A. M. (1960). Solution of Equations and Systems of Equations. Academic Press.
https://doi.org/10.1002/zamm.19630430112

Singh, A. (2018). An efficient fifth-order Steffensen-type method for solving systems of nonlinear equations. International
Journal of Computing Science and Mathematics, 9(5), 501-514. https://doi.org/10.1504/IJCSM.2018.095502

Tao, Y., & Madhu, K. (2019). Optimal Fourth, Eighth and Sixteenth Order Methods by Using Divided Difference Techniques
and Their Basins of Attraction and Its Application. Mathematics, 7(4). https://doi.org/10.3390/math7040322

Traub, J. F. (1964). Iterative Methods for the Solution of Equations. Prentice-Hall, Inc.

Wang, X. (2021). Fixed-Point Iterative Method with Eighth-Order Constructed by Undetermined Parameter Technique for
Solving Nonlinear Systems. Symmetry, 13(5). https://doi.org/10.3390/sym13050863

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the
individual author(s) and contributor(s) and not of the Latin American Business and Sustainability Review (LABSREVIEW),
the Academy of Latin American Business and Sustainability Studies (ALBUS) and/or the editor(s). LABSREVIEW and
ALBUS and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods,
instructions, or products referred to in the content.

https://doi.org/10.70469/ALBUS.09 www.albus.lat


https://doi.org/10.1080/10236198.2019.1665653
https://doi.org/10.1155/2013/780153
https://doi.org/10.1016/j.matcom.2024.05.001
https://doi.org/10.3390/a14040101
https://doi.org/10.1016/j.amc.2007.01.062
https://doi.org/10.1007/BF01933248
https://doi.org/10.22436/jmcs.028.03.06
https://doi.org/10.1145/321850.321860
https://doi.org/10.3390/math11061374
https://doi.org/10.1016/C2013-0-11263-9
https://doi.org/10.1002/zamm.19630430112
https://doi.org/10.1504/IJCSM.2018.095502
https://doi.org/10.3390/math7040322
https://doi.org/10.3390/sym13050863

	1. Introduction
	2. Literature Review
	3. Material and Methods
	4. Results
	4.1 Development of the New Iterative Family

	The starting point is the fourth-order iterative method proposed by Artidiello (2014), whose expression is
	where ,𝒔-𝒌.=,𝒇(,𝒚-𝒌.)-𝒇(,𝒙-𝒌.). and ,𝒕-𝒌.=,,𝒇-′.(,𝒙-𝒌.)-𝒇[,𝒙-𝒌.,,𝒚-𝒌.]. , where 𝒇,,𝒙-𝒌., ,𝒚-𝒌..  is the divided difference operator defined in (Ortega & Rheinboldt, 1970), with 𝜶, 𝜷 and 𝜸 being arbitrary parameters.
	4.2 Convergence Analysis of the New Family
	4.3 Stability analysis

	This section focuses on the study of the dynamic properties of the rational operator determined by the iterative family. The dynamic analysis provides important information on the stability of each family member, depending on the initial approximation...
	Proof.  We consider the generic polynomial, 𝒑,𝒙.=(𝒙−𝒂)(𝒙−𝒃), where 𝒂,𝒃∈ℝ are its roots. By applying 𝒑(𝒙) to the family, we obtain a rational operator ,𝑹-𝒑.,𝒙,𝜶, 𝒂,𝒃. which depends on the roots of the polynomial 𝒑(𝒙).  To eliminate th...
	𝑯(𝒛)=,𝒛−𝒂-𝒛−𝒃.,
	which satisfies 𝑯(∞)=𝟏, 𝑯(𝒂)=𝟎 and 𝑯(𝒃)=∞. Therefore, we obtain
	,𝑶-𝜶.,𝒛.=,𝑯∘𝑹∘,𝑯-−𝟏..,𝒛.=,,𝒛-𝟔.,,𝒛-𝟐.+𝟒𝒛+𝟓.𝑴,𝒛.-,𝟓,𝒛-𝟐.+𝟒𝒛+𝟏.𝑵,𝒛..,
	where the polynomials have been defined as
	,,𝑴-𝜶.(𝒛)&=𝜶+𝟓+(𝟑𝟒+𝟒𝜶)𝒛+(𝟗𝟖+𝟓𝜶),𝒛-𝟐.+𝟏𝟓𝟑,𝒛-𝟑.+𝟏𝟒𝟗,𝒛-𝟒.-&+𝟗𝟐,𝒛-𝟓.+𝟑𝟕,𝒛-𝟔.+𝟗,𝒛-𝟕.+,𝒛-𝟖.,-,𝑵-𝜶.(𝒛)&=𝟏+𝟗𝒛+𝟑𝟕,𝒛-𝟐.+𝟗𝟐,𝒛-𝟑.+𝟏𝟒𝟗,𝒛-𝟒.+𝟏𝟓𝟑,𝒛-𝟓.+(𝟗𝟖+𝟓𝜶),𝒛-𝟔.-&+(𝟑𝟒+𝟒𝜶),𝒛-𝟕.+(𝟓+𝜶),𝒛-...
	Since the factor ,𝒛-𝟔. is involved in the operator ,𝑶-𝜶.,𝒛., it is confirmed that the iterative family has an order of at least six in the case of quadratic equations.
	Once the rational operator ,𝑶-𝜶.,𝒛. has been obtained, it is possible to determine its fixed points and to classify them by stability.
	4. Discussion
	5. Conclusions
	References

