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Resumen: El material particulado de 2.5 micras (PM2.5) representa un riesgo 
significativo para la salud en Bogotá D.C., Colombia, especialmente en la 
localidad de Kennedy, donde se registran altas concentraciones. Este estudio 
entrena y compara modelos predictivos univariados utilizando herramientas de 
análisis de datos e inteligencia artificial (IA), y presenta formas de contribuir a 
la gestión localizada de la calidad del aire. La metodología incluyó el uso de 
cinco años de datos históricos, validación cruzada, técnicas de optimización de 
hiperparámetros y pronósticos de un mes, empleando librerías especializadas. 
Los hallazgos principales indican que, aunque los modelos univariados enfrentan 
limitaciones dada la complejidad del fenómeno, pueden ofrecer predicciones 
razonables, son de bajo costo y fáciles de implementar. La conclusión clave es 
que estos modelos constituyen herramientas viables para apoyar políticas 
ambientales específicas a corto plazo. Esto implica que los gestores y 
responsables de políticas públicas pueden utilizar estos modelos accesibles para 
una acción inmediata, mientras que se sugiere evaluar el costo-beneficio de 
implementar modelos multivariados más complejos en aplicaciones futuras. 

Palabras clave: darts library; políticas ambientales; machine learning; time series; 
univariate models  
 

1. Introducción 
La contaminación del aire es un problema crítico en muchas ciudades del mundo, y Bogotá no es la 

excepción, según GreenPeace en el 2021 la ciudad excedía los niveles mínimos de PM2.5 en 400% en 
comparación con los parámetros de la Organización Mundial de la Salud (OMS) (Greenpeace, 2021). En 
particular, la localidad de Kennedy ha sido identificada como una de las zonas más críticas, superando los 
estándares del Índice Bogotano de Calidad del Aire (IBOCA). Mientras que la media anual es de aproximadamente 
14.3 µg/m³ en toda la ciudad, en la localidad de Kennedy se han registrado promedios cercanos a 20 µg/m³ y se 
define el nivel de riesgo asociado a esa concentración según el Tabla 1 (IBOCA, 2025). Estas emisiones se 
atribuyen principalmente a factores como la carga logística, el tráfico vehicular y las actividades cotidianas de la 
población local (SEMARNAT, 2021). 

El PM2.5, compuesto por partículas finas suspendidas en el aire, es especialmente peligroso debido a su 
capacidad para penetrar profundamente en los pulmones y entrar en el torrente sanguíneo (SEMARNAT, 2021). 
La exposición prolongada a estos contaminantes ha sido asociada con un aumento significativo en enfermedades 
respiratorias y cardiovasculares, especialmente en poblaciones vulnerables como niños y adultos mayores. El 
Instituto Nacional de Salud (INS) indica que el 89.36 % de las muertes por riesgos ambientales en Colombia están 
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relacionadas con la mala calidad del aire, mientras que el Departamento Nacional de Planeación (DNP) estima 
que los costos asociados ascienden al 1.5 % del Producto Interno Bruto (PIB), con alrededor de 8000 muertes 
anuales y más de 67.8 millones de casos de enfermedades respiratorias (Hernández, 2021). 

Tabla 1. Atributos del IBOCA 

Color Nivel de riesgo por exposición a la 
calidad del aire 

Nivel de actuación 
o respuesta 

PM2.5, 
12h(µg/m³) 

Verde Bajo Prevención 0 – 12 
Amarillo Moderado Prevención 12.1 – 35.4 
Naranja Regular Alerta Naranja 35.5 – 55.4 

Rojo Alto Alerta Roja 55.5 – 151.2 
Morado Peligroso Emergencia 151.2 – 250.4 
Morado Peligroso Emergencia 250.5 – 500.4 

Fuente: Elaboración propia. Datos recuperados del IBOCA 2025. 
 
Kennedy, al ser una de las localidades más densamente pobladas de Bogotá (SDP, 2018), enfrenta un reto 

particular en la gestión de su calidad del aire. La Universidad Nacional de Colombia ha destacado que la alta 
densidad poblacional, combinada con la proximidad a corredores industriales y vías principales, incrementa 
considerablemente las concentraciones de material particulado en esta zona, como indica el informe trimestral de 
enero a marzo (RMCAB, 2024). Asimismo, la Secretaría Distrital de Ambiente (SDA) ha identificado niveles 
críticos de PM2.5 durante las horas pico de tráfico (UNAL, 2024). 

La ciudad dispone de la Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB), que en alianza con el 
IBOCA forma una infraestructura administrada por la SDA (RMCAB, 2024) (SDA, 2022). Esta red, con más de 
20 años de antigüedad, está compuesta por 19 estaciones automáticas que envían datos cada hora, distribuidas 
estratégicamente en las localidades para medir y reportar en tiempo real las concentraciones de contaminantes 
atmosféricos. Los datos recopilados son de acceso público y están disponibles a través de plataformas digitales 
gestionadas por la SDA. Sin embargo, los pronósticos generados a partir de esta información presentan un 
potencial limitado al no considerar características particulares de cada zona y al utilizar herramientas poco 
optimizadas, lo que reduce su capacidad para aportar valor a la propuesta de soluciones focalizadas para cada 
localidad de la ciudad. Dada la amplitud de la información, es crucial maximizar el aprovechamiento de los datos 
y las herramientas actuales para apoyar a las comunidades, generar alertas tempranas, definir soluciones 
estratégicas para los empresarios afectados y hacerlo de manera versátil, eficiente y en el menor tiempo posible. 

En este contexto, el presente estudio tiene como objetivo entrenar diversos modelos predictivos univariados 
para estimar las concentraciones de PM2.5 en Kennedy. La investigación combina técnicas de análisis 
tradicionales y herramientas avanzadas de IA, aprovechando la disponibilidad de datos para respaldar la toma de 
decisiones de las partes interesadas. Además, se eligió un enfoque univariado para reducir la cantidad de 
información a procesar y considerar las dificultades de ampliar a otros tipos de contaminantes ambientales. 

En los últimos años, el uso de técnicas avanzadas de IA y aprendizaje automático ha cobrado relevancia en 
el análisis ambiental, proporcionando herramientas más precisas y adaptativas para el monitoreo y el pronóstico 
de contaminantes atmosféricos, como el PM2.5. Un ejemplo destacado fue la investigación de “AIreySalud” en 
México, donde se utilizó IA para modelar la calidad del aire y pronosticar el nivel de riesgo (Ortuño Mojica et al., 
2020). De forma similar, en Callao, Perú, se implementó un sistema de predicción basado en redes neuronales 
para monitorear PM10 y PM2.5 (Astocondor, 2024), mientras que, en Manizales, Colombia, se diseñó un 
prototipo de redes neuronales adaptado a variables locales, logrando un margen de error del 3 % (García Correa, 
2021). 

A nivel local, se utilizó regresión lineal múltiple para predecir el comportamiento de PM2.5 en Kennedy, 
Bogotá, con un error del 5.6 %, además se determinó que el monóxido de carbono por tráfico vehicular es el 
mayor influyente en la densidad de las emisiones (Salas Nuñez, 2022). Aunque estos estudios demuestran el 
potencial de la IA para predecir la calidad del aire, el rápido desarrollo de estas tecnologías mantiene abiertas las 
posibilidades de mejora. Sin embargo, persiste un vacío en la integración de estas herramientas con las entidades 
de control ambiental, lo que limita su capacidad para impactar en las comunidades afectadas. 

Para el análisis se utilizó RStudio, mientras que el entrenamiento de modelos predictivos se realizó en 
Python. Se emplearon modelos tradicionales de predicción y algoritmos de machine learning, con el uso de 
librerías especializadas y herramientas específicas de cada uno. Además, se empleó la validación cruzada para 
garantizar la capacidad predictiva. Para optimizar los resultados de los mejores modelos se integraron métodos de 
optimización de hiperparámetros (Mango y Optuna) con el fin de anticipar picos de contaminación, alertar con 
suficiente antelación a la población y generar información valiosa para la gestión ambiental focalizadas en la 
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población de Kennedy destacando la importancia de sectorizar políticas ambientales particulares basadas en las 
características de cada área. Además de aprovechar los avances en IA para el análisis ambiental, se enfatiza la 
importancia de desarrollar soluciones innovadoras, ágiles y sostenibles para mitigar problemas de salud pública y 
mejorar la calidad de vida en comunidades vulnerables, como la de Kennedy, de forma focalizada. 

2. Métodos 
2.1 Área De Estudio 

La localidad de Kennedy fue seleccionada debido a sus elevados niveles de PM2.5, como lo indica el 
Observatorio Ambiental de Bogotá (OAB, 2017). La estación de monitoreo en esta área cuenta con sensores que 
han registrado un volumen significativo de datos históricos desde el 2015, lo suficiente para identificar patrones 
estacionarios en las concentraciones de PM2.5. Ubicada en las inmediaciones del Parque Metropolitano Cayetano 
Cañizares, es una zona densamente poblada y presenta alta actividad vehicular, industrial y comercial (UNAL, 
2024). 
 
2.2 Recolección De Datos 

Se recopilaron datos históricos obtenidos de la página oficial del IBOCA (IBOCA, 2025) desde el 1 de enero 
de 2018 (00:00) hasta el 31 de junio de 2024 (23:00), mediante descargas por períodos semestrales obteniendo 12 
archivos que mediante scripts semiautomáticos se consolida una base de datos con 58,440 registros en los cuales 
se hayan la hora, la fecha, la concentración de PM2.5 en microgramos por metro cúbico (µg/m³) y el índice 
IBOCA. Es importante señalar que los datos de julio y agosto de 2024 fueron excluidos del estudio debido al 
mantenimiento de la página IBOCA. Dado que estos registros nunca estuvieron disponibles, no se incluyeron en 
el entrenamiento, la validación ni el pronóstico, por lo que su ausencia no introduce sesgos en los resultados, ya 
que el corte de validación se estableció hasta el 31 de junio de 2024. 

 
2.3 Procesamiento Y Transformación De Datos  

El análisis exploratorio, la transformación y limpieza de los datos se llevaron a cabo utilizando RStudio e 
integrando librerías especializadas en manejo de datos y series de tiempo. Se emplearon DataExplorer, 
PMCMRplus y tseries para el análisis exploratorio; imputeTS para la imputación de datos faltantes, y forecast 
para el manejo de los datos atípicos. Además, se integraron las librerías broom, car, ggplot2, lubridate, Metrics, 
openxlsx, readxl, reshape2, tidyverse y xts para tareas generales como transformación de datos, ajustes 
estadísticos, evaluación de métricas, visualización avanzada y manejo de archivos. Véase el detalle específico del 
uso de cada librería en la Tabla 2. 

 

Tabla 2. Detalles de las librerías utilizadas en RStudio. 

Librería Descripción Uso específico 
Generales 

Metrics Evaluación de métodos de imputación de 
datos 

Cálculo de métricas como MAE, RMSE, 
MAPE 

reshape2 Transformación de estructuras de datos Conversión entre formatos wide y long 
xts Manejo eficiente de series temporales 

indexadas 
Estructuración de los datos por tiempo 

openxlsx Escritura y creación de archivos Excel Exportación de resultados, generación de 
tablas para análisis o anexos 

lubridate Manipulación de fechas y horas Extraer componentes de fechas (hora, día, 
mes, día de la semana, trimestre del año, 

etc.) 

readxl Lectura de archivos Excel (.xls y .xlsx) Importación de datos desde fuentes 
externas en formato Excel 

tidyverse Conjunto de herramientas para manipulación 
y visualización de datos 

Limpieza, transformación, filtrado, 
análisis general 
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car Pruebas estadísticas y regresión Mejoramiento de las agrupaciones en los 
gráficos de bigotes, histogramas y 

densidad 
ggplot2 Visualización de datos Mejoramiento de los gráficos en los casos 

pertinentes 
broom Conversión de objetos estadísticos a data 

frames 
Organización de resultados y resúmenes 

para visualización 
Análisis exploratorio 

PMCMRplus Pruebas estadísticas no paramétricas (post-
hoc) 

Prueba Games-Howell 

tseries Herramientas de análisis de series temporales Pruebas ADF y estacionariedad 
DataExplorer Exploración automatizada de datos Resumen estadístico y visualizaciones de 

datos faltantes 
Imputación 

imputeTS Imputación de datos faltantes en series 
temporales 

Imputar datos faltantes del PM2.5 

Datos atípicos 
forecast Modelado y predicción de series temporales Manejo automatizado de valores atípicos 

con la función tsoutliers() 
Fuente: Elaboración propia, 2025. 
 

Para evaluar la estacionariedad de la serie temporal, se emplearon gráficos de descomposición estacional y 
la prueba Aumentada de Dickey-Fuller (ADF) sin descomponer la serie, la cual constituye una extensión de la 
prueba de Dickey-Fuller convencional que corrige posibles problemas de autocorrelación. La hipótesis nula 
plantea no estacionariedad, mientras que la hipótesis alternativa postula estacionariedad. Si el valor p es inferior 
a un umbral de significancia de 0.05, se rechaza la hipótesis nula, concluyéndose que la serie presenta 
características de estacionariedad (Said & Dickey, 1984).  

Se identificaron 2882 datos faltantes (~4.93 %) distribuidos aleatoriamente, cumpliendo con el supuesto de 
Missing Completely At Random (MCAR), según el enfoque propuesto en Review for Handling Missing Data 
with special missing mechanism (Zhou, Aryal & Bouadjenek, 2024). Para imputarlos se utilizó la librería 
especializada imputeTS, se consideraron dos enfoques: 

 
• Primero, Agrupación Por Hora Del Día. Se propone un supuesto en el que hay diferencias 

significativas entre los datos separados por hora y se verifica con una prueba de hipótesis Games-
Howell (Games & Howell, 1976). La imputación se hizo para cada grupo con algoritmos de 
interpolación, Last Observation Carried Forward (LOCF), moving average (MA), mean y aleatorio, 
seleccionando el método con el menor Median Absolute Error (MDAE), el mayor p-valor de las 
pruebas de Kolmogorov-Smirnov (Massey, 1951) y coherencia continua de los datos. 

 
• Segundo, Sin Agrupación. Se utiliza la librería imputeTS, que ofrece algoritmos especializados 

para la imputación de series temporales. Se aplicaron los métodos interpolación (en sus variantes 
lineal, spline y stine) para una imputación suavizada de datos; Kalman StructTS, el cual ajusta 
modelos estructurales que descomponen la serie en componentes como tendencia y estacionalidad, 
permitiendo una imputación basada en la estimación por máxima verosimilitud de dichos 
componentes y Kalman auto.arima, que identifica automáticamente la mejor estructura ARIMA 
para los datos y ajusta sus parámetros; y métodos avanzados como seadec y seasplit, cada uno 
combinado con variantes internas de imputación: interpolación, Kalman y media móvil, que 
permiten capturar estructuras estacionales de forma explícita (Moritz & Bartz-Beielstein, 2017).  El 
mejor método se selecciona con los criterios del enfoque anterior. 

 
Finalmente, se manejaron los datos atípicos de ambos conjuntos de datos. Para ello se usó la librería forecast, 

que clasifica e imputa automáticamente los outliers mediante descomposiciones estadísticas. Específicamente se 
usa la función tsoutliers(), este método divide la serie en componentes de tendencia, estacionalidad y ruido, 
identificando aquellos con desviaciones significativas en el componente de ruido. Posteriormente, los imputa 
utilizando interpolación o extrapolación, manteniendo la coherencia con la tendencia y estacionalidad de la serie 
para evitar sesgos en los análisis posteriores (Hyndman & Khandakar, 2008). 
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2.4 Entrenamiento, Validación, Evaluación Y Comparación De Modelos Predictivos 

Antes de iniciar se dio reproducibilidad al experimento utilizando la librería Random, y específicamente la 
función Random.seed(0) que fija la semilla del generador aleatorio nativo de Python. Todo el proceso de 
entrenamiento, validación, evaluación y comparación de los modelos se realizó en realizó en Python 3.11.3 
utilizando las librerías especializadas; Darts, dado que ofrece una estructura unificada y versátil para el 
entrenamiento y evaluación de múltiples modelos de predicción en series temporales, integrando tanto enfoques 
clásicos como redes neuronales modernas (Herzen et al., 2021). Prophet, utilizado directamente desde su librería 
oficial por su capacidad para modelar tendencias y estacionalidades de manera transparente e intuitiva, 
especialmente útil para datos con ciclos múltiples o discontinuidades (Taylor & Letham, 2017). Finalmente, se 
integró XGBoostRegressor desde su paquete específico, dada su eficiencia computacional, alto rendimiento en 
tareas de predicción, su capacidad para capturar relaciones no lineales y manejar automáticamente interacciones 
entre características (Chen & Guestrin, 2016). Aunque algunos modelos permiten incluir variables relacionadas 
con días festivos, en este estudio se optó por no considerarlas, dado que su incorporación añade complejidad y 
tiempo de procesamiento. El objetivo principal es contar con un modelo ágil que apoye la toma de decisiones 
ambientales, por lo que se priorizó la simplicidad y la eficiencia. 

Se entrenan un total de ocho modelos de pronósticos, agrupados en dos categorías: métodos tradicionales y 
de machine learning. La selección de estos modelos se basó en su capacidad para capturar diferentes estructuras 
presentes en series temporales, como la tendencia, la estacionalidad y los patrones no lineales. Entre los métodos 
tradicionales se incluyen Prophet, Exponential Smoothing, ARIMA, Linear Regression y así como enfoques más 
recientes como Theta y FourTheta. Por otra parte, los modelos de machine learning fueron N-BEATS y 
XGBoostRegressor por su potencial para aprender relaciones complejas sin supuestos estrictos sobre la forma de 
la serie. Revise en detalle estos modelos en la Tabla 3. 

 

Tabla 3. Detalles de los modelos utilizados en Python. 

Categoría Modelo ¿Por qué? Biblioteca 

Tradicional Prophet Modelo aditivo que descompone en tendencia, 
estacionalidad y días festivos, muy útil para series con 
ciclos múltiples y cambios de nivel. (Taylor & Letham, 

2017) 

Prophet 

Exponential 
Smoothing 

Captura de forma simple los componentes de nivel, 
tendencia y estacionalidad, excelente como baseline y para 

datos con patrones estacionales. (Hyndman & 
Athanasopoulos, 2021) 

Darts 

Arima Modelo estadístico que combina auto regresión, 
diferenciación de medias móviles, muy efectivo para series 

estacionarias tras diferenciación. (Hyndman & 
Athanasopoulos, 2021) 

Linear 
Regression 

Model 

Permite modelar tendencias lineales y sirve como 
referencia sencilla antes de usar métodos más complejos. 

(Hyndman & Athanasopoulos, 2021) 
Theta combina dos variantes de la serie una centrada en tendencia 

y otra en curvatura para ofrecer pronósticos estables que 
capturan tendencia y estacionalidad de forma sencilla y 

robusta. (Assimakopoulos & Nikolopoulos, 2000) 
FourTheta Extiende al método Theta con cuatro linealizaciones 

distintas para mejorar la captura de patrones de tendencia y 
estacionalidad. (Spiliotis & Assimakopoulos, 2020) 

Machine 
Learning 

N-beats Red neuronal específica para series temporales, capaz de 
aprender patrones complejos de forma jerárquica sin 

necesidad de ingeniería manual. (Oreshkin et al., 2020) 
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XGBoost 
Regressor 

Modelo de boosting de gradiente que captura relaciones no 
lineales y alta interactuación entre rezagos muy potente tras 

ajuste de hiperparámetros. (Chen & Guestrin, 2016) 

XGBoost 
Regressor 

Fuente: Elaboración propia, 2025. 
 

El ajuste inicial de cada modelo se realizó sin optimización de hiperparámetros y un intervalo de confianza 
del 95%. Los ocho modelos fueron entrenados y validados con los datos históricos hasta el 31 de mayo del 2024, 
y la evaluación se dio con un intervalo de predicción en el horizonte de un mes en comparación con los datos 
originales, es decir, desde 01 al 30 de junio, considerando las dos perspectivas de imputación que se tomaron en 
cuenta, utilizando las métricas Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root 
Mean Square Error (RMSE) y Symmetric Mean Absolute Percentage Error (SMAPE), junto con una valoración 
de consistencia visual basada en la alineación gráfica entre los pronósticos y los valores reales el cual tuvo mayor 
peso en la selección del modelo en este estudio. 

Se compararon los ocho modelos desde sus métricas cuantitativas y de una clasificación base a las 
visualizaciones de los pronósticos, seleccionando los de mejor desempeño inicial para comenzar un proceso de 
optimización de hiperparámetros en Google Colab dado el tiempo de procesamiento requerido (aproximadamente 
20 horas por modelo). Para ello se usó la librería Mango (Sandha, Aggarwal, Fedorov & Srivastava, 2020) para 
Prophet y XGBoostRegressor, mientras que para N-BEATS se recurrió a Optuna (Akiba, Sano, Yanase, Ohta & 
Koyama, 2019). Tras la optimización, los modelos ajustados se sometieron nuevamente a entrenamiento y 
validación cruzada, asegurando una comparación adecuada. Finalmente, se seleccionó el modelo 
XGBoostRegressor por presentar el mejor desempeño en el conjunto de evaluación, destacándose por su precisión 
predictiva, la coherencia con los patrones estacionales observados, sus métricas cuantitativas y la consistencia 
visual. 

Adicionalmente a las métricas cuantitativas, se evaluó la consistencia visual de los pronósticos, un factor 
cualitativo al que se le otorgó un peso significativo en la selección final del modelo. Para convertir este criterio 
en una evaluación sistemática y reproducible, se diseñó una rúbrica con tres criterios específicos: la captura de la 
estacionalidad diaria, la tendencia semanal y la coherencia de la magnitud. A continuación, en la Tabla 4, se 
detalla la rúbrica empleada para asignar una calificación de 'Alta', 'Media' o 'Baja' a cada modelo. 

 

Tabla 4. Rúbrica para la Evaluación de la Consistencia Visual de los Pronósticos. 

Criterio de Evaluación Nivel de Desempeño Descripción Objetiva del Pronóstico 

1. Captura de 
Estacionalidad Diaria 

Alto 

Replica consistentemente los dos picos de 
concentración diarios identificados: el matutino 

(aprox. 06:00-09:00) y el nocturno (aprox. 20:00-
01:00). La sincronización y la altura relativa de 
los picos son similares a las de los datos reales. 

Medio 

Muestra un patrón cíclico diario, pero puede fallar 
en capturar ambos picos, presentar un desfase 
horario significativo o subestimar/sobrestimar 

consistentemente su magnitud. 

Bajo 
El pronóstico es una línea plana o no muestra un 
patrón cíclico diario reconocible que corresponda 

a los datos de validación. 

2. Captura de Tendencia 
Semanal 

Alto 

Refleja visiblemente la disminución de las 
concentraciones durante el fin de semana, 

especialmente el domingo, en comparación con 
los días de lunes a sábado. 

Medio 

Muestra alguna variabilidad a lo largo de la 
semana, pero no logra capturar de forma clara y 
consistente la caída del domingo o la tendencia 

general de los días laborables. 
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Bajo 
El pronóstico no presenta un patrón semanal 

discernible; todos los días son tratados de manera 
similar. 

3. Coherencia de Magnitud 
y Rango 

Alto 

Los valores del pronóstico se mantienen dentro 
del rango general de los datos reales. Captura 

tanto los niveles base de concentración como la 
amplitud de los picos con una precisión 

razonable. 

Medio 

El pronóstico es visualmente coherente en patrón 
pero presenta un sesgo constante (ej. siempre por 

debajo de los valores reales) o es demasiado 
"suave", perdiendo la variabilidad (picos y valles) 

de la serie. 

Bajo 

Los valores pronosticados se encuentran en un 
rango completamente diferente al de los datos 

reales o se mantienen casi constantes, ignorando 
la dinámica de la serie. 

Fuente: Elaboración propia (2025). 
 
Para la evaluación del rendimiento de los modelos, se utilizó un conjunto de métricas complementarias. Si 

bien se reporta el MAPE por su interpretación intuitiva en términos porcentuales, se reconoce su conocida 
inestabilidad ante valores reales cercanos a cero, una condición frecuente a las características en esta serie 
temporal. Para contrarrestar esta limitación, se dio mayor énfasis al sMAPE (Symmetric Mean Absolute 
Percentage Error), que penaliza los errores de forma simétrica y es más robusto en estos escenarios, y al MAE y 
RMSE, que miden el error absoluto en las unidades originales de la serie (µg/m3). 

3. Resultados y discusión 
3.1 Implicaciones En La Analítica De Datos 
 

La prueba ADF se empleó para evaluar la presencia de una raíz unitaria en la serie temporal, esta mostró un 
p-valor de 0.01 menor que 0.05 que permite rechazar la hipótesis nula, indicando la ausencia de una tendencia 
estocástica, confirmando estacionariedad en la serie temporal y validando la viabilidad de emplear modelos 
predictivos. Este hallazgo se complementa con el gráfico de descomposición estacionaria que revela patrones 
diarios, semanales y mensuales, junto a una tendencia decreciente del último año, como se muestra en la Figura 
1. Estos patrones refuerzan la naturaleza predecible y estacional de las concentraciones de PM2.5, destacando la 
relevancia de aplicar enfoques predictivos robustos, entendidos como aquellos capaces de capturar la 
estacionalidad (diaria, semanal y mensual), adaptarse a variaciones no lineales, manejar el ruido en los datos, 
mantener la coherencia contextual y ofrecer estimaciones útiles. 

 
Figura 1. Componentes de descomposición estacional y tendencia. 
Fuente: Elaboración propia (2024), con todos los datos de concentración de PM2.5 del conjunto de análisis. 

 
Las concentraciones de PM2.5 durante la semana muestran patrones crecientes desde el lunes al sábado, 

siendo el día menos contaminado el domingo. Se observa un incremento crítico en las concentraciones diarias 
entre las 06:00 y las 09:00 horas, seguido de un segundo pico entre las 20:00 y las 01:00 horas, lo que sugiere que 
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el tráfico vehicular, las actividades comerciales y la rutina poblacional tienen un papel determinante en la 
contaminación del aire. En los patrones anuales, las concentraciones más altas se registraron durante los meses 
secos (diciembre a marzo), mientras que los meses lluviosos presentaron valores más bajos, lo cual es consistente 
con la investigación de Castro Camberos y Mancipe Díaz (Castro Camberos & Mancipe Díaz, 2023). 

 
Para el primer enfoque de imputación, en el análisis se identifican diferencias significativas en las concentraciones 
de PM2.5 entre las 06:00 y las 13:00 horas, soportado por la prueba Games-Howell como se observa en la Figura 
2. 
 
 

 
Figura 2. Mapa de calor de los valores p de la prueba Games-Howell por hora. 
Fuente: Elaboración propia (2024). 

 
Se agrupan los datos según la hora del día y al imputar se observó que los métodos aleatorios y de media 

presentaron inconsistencias significativas. En contraste, la media móvil se destacó como el método más robusto 
en la mayoría de las horas, sin embargo, para las horas 9, 10 y 11, se prefirió la interpolación, y para la hora 22, 
el método LOCF (imputación según la última observación disponible previa en la serie de tiempo) mostró mejor 
desempeño como se evidencia en la Tabla 5. 

Tabla 5. Método de imputación seleccionado para cada hora del día. 

Hora 
Métricas de evaluación 

Método 
seleccionado PH Kolmogorov Smirnov MDAE 

Mejor método P-value Interpolación LOCF MA Media Random 
0 MA 0.881 10.00 10.00 10.00 10.00 10.00 MA 
1 MA 0.997 10.00 10.00 10.00 10.00 10.00 MA 
2 MA 0.858 9.00 9.00 9.00 9.00 10.00 MA 
3 MA 0.971 9.00 9.00 9.00 9.00 9.00 MA 
4 MA 0.884 10.00 10.00 10.00 10.00 11.00 MA 
5 MA 0.884 9.00 9.00 9.00 9.00 9.00 MA 
6 MA 0.867 10.00 10.00 9.96 10.00 10.00 MA 
7 MA 0.893 11.00 11.00 11.00 11.00 11.15 MA 
8 MA 0.946 13.00 13.00 13.00 13.00 14.00 MA 
9 MA 0.727 13.00 14.00 13.00 13.93 14.00 Interpolación 

10 Interpolación 0.908 12.00 12.00 12.00 11.92 12.00 Interpolación 
11 Interpolación 0.837 11.00 11.00 11.00 11.00 12.00 Interpolación 
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12 MA 0.570 9.18 9.00 9.00 9.00 10.00 MA 
13 MA 0.886 9.00 9.00 8.97 9.00 9.00 MA 
14 MA 0.539 10.00 10.00 10.00 10.00 11.00 MA 
15 MA 0.704 9.00 9.00 9.00 9.00 9.00 MA 
16 MA 0.734 9.00 9.00 9.00 9.00 9.00 MA 
17 MA 0.849 9.00 9.00 9.00 9.00 9.00 MA 
18 MA 0.862 8.00 8.00 8.00 8.00 8.00 MA 
19 MA 0.894 9.00 9.00 9.00 9.00 9.00 MA 
20 MA 0.982 9.00 9.00 9.00 9.00 9.00 MA 
21 MA 0.944 9.00 9.00 9.00 9.00 9.00 MA 
22 LOCF 0.960 8.20 9.00 8.83 9.00 9.00 LOCF 
23 MA 0.959 10.00 10.00 10.00 10.00 10.00 MA 

Fuente: Resultados de test kolmogorov y MDAE. 
Nota. MDAE: Median Absolute Error. MA: Moving Avegare. LOCF: Last Observation Carried Forward. 
 

En el conjunto imputado sin agrupación por horas, el método Seasplit- Interpolación destacó por su 
coherencia visual. Sin embargo, las pruebas de Kolmogorov-Smirnov aplicadas a todos los métodos revelaron 
diferencias significativas respecto a la distribución de densidades de probabilidad de los datos originales. Aunque 
la literatura no presenta un consenso claro sobre los métodos óptimos para imputar series temporales con 
estacionalidades diarias, semanales y mensuales, el primer enfoque de agrupamiento por hora mostró una mayor 
similitud con la distribución original, mientras que el enfoque global sobresalió en coherencia temporal, como se 
ilustra en la Figura 3. 
 

 
Figura 3. Comparación de densidades de las concentraciones de PM2.5 con imputación global respecto 
al original. 
Fuente: Elaboración propia (2024). Eje X: concentraciones de PM2.5 µg/m³. 

 
En cuanto a los datos atípicos, se realizó una verificación minuciosa mediante la comprobación local de las 

concentraciones reportadas y su coherencia con las tendencias subyacentes en la curva diaria. Se concluyó que los 
datos atípicos detectados probablemente eran errores en el aparato de medición. Al separar estos mismos por las 
horas del día se logra mejorar la coherencia de la serie de tiempo como se muestra en la Figura 4. Análogamente 
se hizo lo mismo con ambos conjuntos de datos imputados. 
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Figura 4. Comparación de ruido: datos originales vs datos tratados (reducción de atípicos). 
Fuente: Elaboración propia (2024). Eje Y: concentraciones de PM2.5 µg/m³. Eje X: horas del día. 

 
La elección de la librería Darts resultó estratégica para este estudio, ya que permitió comparar de forma 

eficiente diversos enfoques de pronóstico bajo condiciones experimentales homogéneas. Su compatibilidad tanto 
con modelos tradicionales como con métodos de aprendizaje automático facilitó su entrenamiento, validación y 
comparación coherente, reduciendo significativamente el tiempo de iteración entre pruebas. Esta flexibilidad 
operativa fue clave para evaluar el rendimiento relativo de seis modelos (Ver tabla 3.) diferentes con una base 
metodológica uniforme, lo que fortaleció la confiabilidad de los resultados presentados. 

En cuanto a los modelos predictivos, los resultados iniciales no evidenciaron diferencias significativas entre 
los conjuntos imputados, lo que sugiere que los modelos son poco sensibles a los enfoques de imputación 
propuestos en esta investigación. Por lo que, a partir de aquí, solamente se tuvo en cuenta el primer grupo para el 
entrenamiento, validación y evaluación de los modelos. 

Los modelos ARIMA y LinearRegression no lograron capturar adecuadamente los patrones estacionarios, 
mientras que los modelos Exponential Smoothing, Theta y FourTheta lograron capturar únicamente la 
estacionalidad diaria, evidenciando una forma cíclica en sus predicciones. Por su parte, los modelos Prophet, N-
BEATS y XGBoostRegressor fueron seleccionados con base en su rendimiento predictivo y coherencia, tanto en 
sus métricas cuantitativas (Tabla 6) y la rúbrica de consistencia visual (Tabla 4) como en las visualizaciones 
presentadas en la Figura 5. 
 

Tabla 6. Métricas de evaluación general de los modelos entrenados. 

Modelo Métricas de evaluación 
MAE MAPE RMSE SMAPE Consistencia visual 

Sin optimización 
Prophet 6.74 163.93 8.32 70.14 Alta 

ExponentialSmoothing 5.87 98.78 8.11 66.22 Media 
ARIMA 5.84 113.86 7.95 66.09 Baja 

LinearRegressionModel 10.78 293.59 11.79 90.33 Baja 
Theta 6.50 80.07 9.32 82.36 Media 

FourTheta 6.50 80.07 9.32 82.36 Media 
N-BEATS 22.76 71.72 20.03 119.58 Alta 

XGBoostRegressor 7.74 154.55 9.87 86.70 Alta 
Fuente: Resultados de métricas de los pronósticos. 
Nota. MAE: Mean Average Error. MAPE: Mean Absolute Percentage Error. RMSE: Root Mean Squared Error. SMAPE: 
Symmetric Mean Absolute Percentage Error. 
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Figura 5. Pronóstico de los 8 modelos entrenados desde el 01 al 30 de junio del 2024. 
Fuente: Elaboración propia (2024). Eje Y: concentraciones de PM2.5 µg/m³ predicción vs real. Eje X: días 
del mes. 

 
Para ajustar los hiperparámetros y mejorar los resultados de los modelos seleccionados se recurrió a librerías 

especializadas en optimización. Para Prophet y XGBoostRegressor se utilizó Mango, una librería ligera de 
optimización bayesiana diseñada para ejecutar múltiples evaluaciones en paralelo, priorizando la velocidad y la 
escalabilidad en la búsqueda de combinaciones óptimas (Sandha, Aggarwal, Fedorov & Srivastava, 2020). 
Mientras que para N-BEATS se empleó Optuna, una herramienta flexible que implementa búsqueda bayesiana 
avanzada mediante Tree-structured Parzen Estimator para encontrar los mejores parámetros (Akiba, Sano, 
Yanase, Ohta & Koyama, 2019). Los resultados obtenidos se muestran en la Figura 6 y las métricas en la Tabla 
7, destacando al modelo XGBoostRegressor como el mejor debido a su capacidad para detectar y proyectar 
patrones estacionarios diarios, semanales y mensuales, lo que le permite realizar pronósticos razonables para un 
horizonte temporal de un mes. 

Tabla 7. Métricas de evaluación general de los modelos entrenados optimizados. 

Modelo Métricas de evaluación 
MAE MAPE RMSE SMAPE Consistencia visual 

Optimizados 
Prophet 6.76 164.56 8.33 70.19 Media 

N-BEATS 2.20 99.00 5.20 82.31 Baja 
XGBoostRegressor 6.52 154.52 7.90 69.29 Alta 

Fuente: Resultados de métricas de los pronósticos. 
Nota. MAE: Mean Absolute Error. MAPE: Mean Absolute Percentage Error. RMSE: Root Mean Squared Error. SMAPE: 
Symmetric Mean Absolute Percentage Error. 
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Figura 6. Modelos seleccionados optimizados en Google Colab. 
Fuente: Elaboración propia (2024). Eje Y: concentraciones de PM2.5 µg/m³ predicción vs real. Eje X: días 
del mes. 

 
El modelo XGBoostRegressor entrenado se presenta como una herramienta práctica y de bajo costo que 

aprovecha datos accesibles y técnicas de IA, logrando predicciones razonables para la toma de decisiones, 
demostrando la viabilidad de utilizar recursos limitados para abordar problemas críticos de calidad del aire. Su 
implementación impactaría directamente en la comunidad, incluso mientras se desarrollan modelos más 
complejos en paralelo y puede mejorar significativamente la capacidad de respuesta ante episodios de 
contaminación en corto y mediano plazo en la localidad de Kennedy, protegiendo a la población vulnerable y 
optimizando los recursos disponibles. 

En la fase sin optimización, XGBoostRegressor mostró un desempeño competitivo y consistente 
visualmente, superando a modelos como ARIMA y Linear Regression en la mayoría de métricas evaluadas (Ver 
Tabla 6.). Tras la optimización de hiperparámetros, mejoró su rendimiento manteniendo alta consistencia visual 
y un desempeño equilibrado. Aunque el modelo N-BEATS optimizado obtuvo los valores más bajos de MAE y 
RMSE, presentó alta variabilidad en otras métricas y baja coherencia visual, lo que afectó su fiabilidad. Por estas 
razones, la selección final del modelo se fundamentó en un balance entre métricas cuantitativas y consistencia 
visual. 
 
3.2 Implicaciones En La Salud Pública 

Durante el análisis, se identificaron franjas horarias (entre las 06:00 y las 13:00 horas), así como los días de 
la semana (jueves a sábado) y los meses del año (septiembre a mayo) en las que es más probable que se registren 
picos de concentración de PM2.5 peligrosos para la salud. Esta evidencia refuerza la necesidad de considerar estos 
patrones en la formulación de políticas públicas focalizadas específicas y dinámicas, orientadas a mitigar el daño 
a la salud de la población. 

Entre las estrategias derivadas de estos hallazgos se sugiere: restricciones temporales al tránsito en horarios 
o días críticos, mayor vigilancia ambiental durante los periodos mencionados, y el fortalecimiento de campañas 
de promoción del uso de transporte limpio. Además, podría permitir la emisión de alertas en tiempo real a través 
de una página web o aplicación móvil que se apoyen en modelos predictivos como los desarrollados en este 
estudio. Estas herramientas permitirían respaldar los mecanismos de control ambiental existentes en Bogotá, como 
la SDA, RMCAB, IBOCA, MinSalud y el OAB. 

El modelo también puede contribuir a la planificación de rutas vehiculares en función de los niveles de 
contaminación, la justificación de proyectos de transición energética en camiones de carga, la adecuación de 
horarios laborales o escolares, y la emisión de alertas tempranas para la población. Este estudio resalta el valor de 
integrar herramientas emergentes en el diseño de políticas locales específicas, considerando la variabilidad 
espacial de los niveles de PM2.5, influenciada por factores como el horario, el tráfico vehicular, la cultura local y 
otras condiciones propias de cada zona. 
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En consecuencia, los hallazgos permiten fundamentar la formulación de intervenciones localizadas, 
combinando acciones de corto plazo como la reorganización de actividades en horarios críticos junto a estrategias 
de mediano y largo plazo, como la inversión en infraestructura verde y zonas de amortiguamiento. 

Este trabajo abordó el desafío de modelar las concentraciones de PM2.5 en la localidad de Kennedy con un 
enfoque univariado, logrando avances en: la comprensión del fenómeno y sus implicaciones en la salud pública, 
el análisis de la calidad de los datos ambientales con estacionalidades, la propuesta de políticas específicas para 
la localidad, y la promoción de modelos predictivos accesibles como parte de una gobernanza de datos más 
efectiva. 

Finalmente, se identificaron retos significativos relacionados con la cobertura de los sensores actuales, cuya 
precisión no supera los 100 metros (TSI, 2023). Dada la extensión territorial de Kennedy, resulta difícil generalizar 
un estado representativo para toda la localidad. Por ello, se recomienda a la SDA evaluar los requerimientos 
establecidos en la normatividad vigente (SDA, 2022), considerando las características de cada sector y la validez 
de la información según el alcance de los medidores. 
 

5. Conclusiones 
La calidad de los datos representó un desafío significativo; los algoritmos de imputación seleccionados 

lograron preservar las tendencias estacionales manteniendo la coherencia temporal, mientras que la agrupación 
por hora del día resultó eficaz para minimizar el impacto de anomalías, permitiendo un tratamiento 
contextualizado de los valores atípicos sin comprometer las características estacionales. 

Los resultados sugieren que el modelo XGBoostRegressor puede constituir una herramienta sólida para la 
toma de decisiones informada al proporcionar estimaciones suficientemente consistentes que fortalezcan la 
justificación técnica de proyectos orientados a la mitigación de la exposición al PM2.5. Aunque los modelos 
multivariados podrían ofrecen una mayor precisión, este enfoque es ágil, de bajo costo y escalable. 

La flexibilidad de la librería Darts fue clave en la comparación eficiente y coherente entre múltiples modelos 
de pronóstico (modelos tradicionales y machine learning), mejorando la calidad del análisis y optimizando 
recursos técnicos. Por su parte, la incorporación de las librerías Mango y Optuna permitió ejecutar búsquedas de 
hiperparámetros en paralelo y reproducible, agilizando el ajuste de los modelos. 

La metodología empleada podría adaptarse a otras localidades que cuenten con información histórica 
suficiente. Este estudio sugiere que no es viable aplicar soluciones generalizadas para la gestión de la calidad del 
aire en Bogotá D.C. La agilidad que ofrecen las tecnologías de analítica y pronóstico permitiría responder con 
mayor rapidez a las diferencias territoriales. 

Esta herramienta puede facilitar diversas acciones estratégicas para las entidades de control ambiental en 
Bogotá como priorización de intervenciones en zonas críticas, planificación de políticas públicas basadas en 
evidencia, y optimización recursos. Además de fortalecer la gobernanza de datos ambientales al integrar modelos 
predictivos accesibles en la toma de decisiones locales. Este enfoque se alinea con varios Objetivos de Desarrollo 
Sostenible (ODS), en particular el 9 (Industria, innovación e infraestructura), 11 (Ciudades y comunidades 
sostenibles) y 13 (Acción por el clima) (United Nations, 2015). 

Finalmente, se resalta el desafío de mejorar la precisión mediante el entrenamiento de un modelo 
multivariado analizando la agilidad, los costo-beneficio y la velocidad de implementación, así como el 
perfeccionamiento de algoritmos de imputación que se adapten a patrones estacionarios. Este esfuerzo colectivo 
consolidará el uso de IA en la gestión de la calidad del aire y transformará la manera en que se aborda este 
problema en ciudades con desafío similares a Bogotá. 
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