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Abstract: This article presents a proof-of-concept system for predicting hourly
concentrations of PM..s and PMio in Bogotd using Long Short-Term Memory (LSTM)
neural networks. The objective is to anticipate critical pollution episodes and support
preventive decision-making in real time. Hourly data from the Bogota Air Quality
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Monitoring Network were structured into 24-hour time windows and used as inputs to a
64-neuron LSTM architecture with two dense outputs for simultaneous estimation of both
pollutants. The implementation in Keras/TensorFlow incorporated regularization
techniques such as Early Stopping to improve model stability and reproducibility. Results
Open Access article is distributed under show that while the model captures short-term fluctuations in PM..s with reasonable
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accuracy, performance for PMio remains limited, underscoring the exploratory nature of
this study. The contribution lies in demonstrating the feasibility of recurrent neural
networks for urban air quality forecasting and outlining pathways for future
improvements, including the integration of meteorological covariates, larger datasets, and
hybrid architectures such as CNN-LSTM and attention-based models. By positioning the
work as a preliminary step, the study highlights opportunities to advance toward
automated early warning tools aligned with current environmental regulations and the
2030 air quality reduction goals.
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1. Introduction

Air pollution caused by PM..s (diameter < 2.5 um) and PMo (diameter < 10 pm) particles is one of the main
environmental risk factors for human health and the global ecosystem. It is associated with respiratory diseases,
cardiovascular conditions, and premature mortality (World Health Organization [WHO], 2021; U.S.
Environmental Protection Agency [EPA], 2023).

In Bogota, measurements from the Bogota Air Quality Monitoring Network (RMCAB) indicate that PMa.s
and PMio concentrations at stations such as Fontibon and Puente Aranda frequently exceed WHO recommended
thresholds. This highlights the need for tools that can anticipate critical pollution episodes (Area Metropolitana
de Bogota, 2025; Franceschi et al., 2018). The availability of hourly pollutant data at these stations presents an
opportunity to develop predictive models that can inform early warning systems and support environmental policy
decisions (Area Metropolitana de Bogota, 2025).

While traditional statistical methods such as ARIMA models have been used with some success for pollutant
time series, they often lack the flexibility to capture nonlinear relationships and long-term dynamics (Franceschi
et al., 2018). Recurrent neural networks (RNNs) provide a more adaptable approach to modeling temporal
sequences, but they suffer from the vanishing and exploding gradient problem, which makes it difficult to learn
long-term dependencies (Bengio, Simard, & Frasconi, 1994; Pascanu, Mikolov, & Bengio, 2013).
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The Long Short-Term Memory (LSTM) model, introduced by Hochreiter and Schmidhuber (1997),
overcomes these limitations through memory cells and input, forget, and output gates that regulate information
flow and preserve gradients over time (Gers et al., 2002). Furthermore, frameworks such as TensorFlow and its
high-level API, Keras, facilitate the definition, training, and scalability of LSTM architectures, promoting
reproducibility of experiments and computational efficiency (Abadi et al., 2016; Chollet, 2015).

This article proposes a general methodology based on LSTM networks implemented with Keras/TensorFlow
for predicting PM..s and PMio concentrations at the Fontibon and Puente Aranda stations in Bogota. The goal is
to provide a robust and practical tool for local air quality management (Casallas Garcia et al., 2021).

2. Literature Review

The prediction of atmospheric pollutant concentrations has evolved from classical statistical methods to deep
learning approaches that can capture nonlinear patterns and complex dynamics. Models such as autoregressive
integrated moving average (ARIMA) and exponential smoothing offer interpretability and have served as baseline
approaches in numerous studies. However, they show limitations when dealing with time series that exhibit non-
stationary behavior or long-term dependencies (Franceschi et al., 2018; Bengio et al., 1994).

In contrast, neural network-based methods, particularly hybrid architectures that combine convolutional
neural networks (CNNs) with long short-term memory (LSTM) models, have demonstrated greater flexibility in
modeling both spatial and temporal relationships. These approaches have reduced error indicators such as root
mean square error (RMSE) and mean absolute error (MAE) compared to pure LSTMs or traditional statistical
models (Franceschi et al., 2018; Graves et al., 2006).

Recent studies have increasingly turned to hybrid deep learning approaches that combine convolutional,
recurrent, and attention mechanisms to improve the accuracy of air quality forecasting. For example, Zhang et al.
(2023) demonstrated that integrating ARIMA with CNN-LSTM models can capture both linear and nonlinear
components of pollutant time series, achieving superior performance compared to standalone methods. Similarly,
Liang et al. (2025) proposed a CNN-LSTM-multi-head attention—-GRU architecture that significantly reduced
forecasting errors for hourly AQI predictions, highlighting the role of attention mechanisms in capturing long-
range dependencies. Complementing these advances, Lv et al. (2024) introduced an attention-based hybrid
framework that combines ARIMA, CNN, and LSTM with metaheuristic optimization, further emphasizing the
trend toward multi-model ensembles in environmental forecasting. Together, these studies situate the present work
within the broader movement toward hybrid architectures that extend beyond traditional LSTM models, and they
underscore the need to explore CNN-LSTM and attention-based designs for more robust and generalizable
pollutant prediction in urban contexts.

2.1. Theoretical foundations

Recurrent Neural Networks (RNNs): Recurrent Neural Networks (RNNss) process sequential data by feeding
each output back into the network, enabling them to capture temporal dependencies, which makes them suitable
for tasks such as speech recognition and environmental time series analysis (Graves et al., 2006; Hochreiter &
Schmidhuber, 1997). They are typically trained using backpropagation through time (BPTT); however, this
method is prone to vanishing or exploding gradients, which hampers their ability to learn long-term patterns
(Bengio et al., 1994; Pascanu et al., 2013). To address this limitation, architectures such as long short-term
memory (LSTM) and gated recurrent units (GRU) introduce gating mechanisms that regulate information flow
and preserve gradients over long sequences (Gers et al., 2002; Hochreiter & Schmidhuber, 1997). Additionally,
techniques such as connectionist temporal classification (CTC) enhance RNNs in tasks without strict input—output
alignment by allowing them to label unsegmented sequence data (Graves et al., 2006). The general architecture
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of an RNN is illustrated in Figure l.
Recurrent neural network
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O: Network output, the final result after processing the data sequence.

h: Hidden state that stores information from previous steps to capture temporal dependencies.

V: Weight matrix that transforms the hidden state into the output, determining how processed information becomes the resuit.
X: Input at each time step, which can be sequential data.

W: Weight matrix connecting the previous hidden state to the current hidden state.

U: Weight matrix connecting the current input to the hidden state.

In summary, V maps the hidden state to the network's final output, acting as a bridge between memory and the presented values.
Figure 1. Architecture of a recurrent neural network. Source: Own elaboration.

Vanishing Gradient Problem: In RNNSs, backpropagation-based learning can become ineffective over long
sequences due to the vanishing gradient problem: error signals weaken as they propagate across many time steps,
making it difficult to capture long-term dependencies (Bengio et al., 1994). This issue is further exacerbated by
the SoftMax function in the output layer, where gradients diminish even more as outputs approach 0 or 1, as
illustrated in Figure 2 (Pascanu et al., 2013). Consequently, RNNs often struggle to model long-range patterns,
such as seasonal trends in environmental data.

Long short-term memory cells mitigate this limitation by incorporating internal memory and gating
mechanisms that regulate information flow, allowing the network to retain relevant data over time (Gers et al.,
2002; Hochreiter & Schmidhuber, 1997). This enables LSTMs to effectively learn both short and long-term
dependencies, making them better suited for time series forecasting tasks.

Gradient attenuation in the softmax function

Scores Softmax Probabilities

y

Figure 2. Gradient attenuation in the SoftMax function. Source: Own elaboration.
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LSTM Networks: Long short-term memory (LSTM) networks, introduced by Hochreiter and Schmidhuber
(1997), were designed to solve the vanishing gradient problem found in standard RNNs. LSTMs include a memory
cell and three gates that control the flow of information through the sequence (Hochreiter & Schmidhuber, 1997,
Pascanu et al., 2013).

Each LSTM unit includes:

e  An input gate to decide how much new information enters the memory,
e A forget gate to remove unnecessary past information
e An output gate to control what information is passed to the next layer (Pascanu et al., 2013).

These gates enable LSTMs to retain important information across long sequences, unlike traditional RNNs,
which struggle with long-term memory (Gers et al., 2002). The gates use sigmoid functions, while memory
updates rely on the hyperbolic tangent (tanh). A key feature is the constant error carousel (CEC), which helps
preserve gradients over time, allowing stable learning even across hundreds of time steps (Hochreiter &
Schmidhuber, 1997; Gers et al., 2002).

For implementation, TensorFlow offers the tf.keras.layers.LSTM layer, which runs efficiently on GPUs and
TPUs and integrates with tf.data pipelines. Keras simplifies model design and tuning and supports callbacks such
as Early Stopping to prevent overfitting (Abadi et al., 2016; Chollet, 2015). The internal design of an LSTM unit
is illustrated in Figure 3.
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Figure 3. Structure of an LSTM unit with input, forget, and output gates. Source: Own elaboration

2.2 Hybrid Architectures for Sequential Forecasting

Although LSTMs effectively capture temporal dependencies, recent research has emphasized the advantages
of hybrid architectures that integrate complementary models to address the multifaceted nature of environmental
time series. These designs combine convolutional, recurrent, and attention-based mechanisms, yielding more
accurate and generalizable predictions compared to standalone models.

CNN-LSTM Models: Convolutional neural networks (CNNs) are widely used for extracting local patterns
in structured data. When applied to time series, one-dimensional convolutions detect short-term fluctuations and
seasonal cycles, which can then be passed to an LSTM layer to capture sequential dependencies over longer
horizons. This combination reduces the burden on LSTMs to model fine-grained variations, thereby improving
both convergence speed and predictive accuracy (Zhang et al., 2023). In the context of air quality forecasting,
CNN-LSTM models have shown improved robustness to noisy datasets and irregular pollution episodes,
outperforming both pure CNNs and LSTMs.

Attention-based Hybrids: While LSTMs and CNN-LSTMs capture temporal dependencies, their ability to
distinguish the relative importance of time steps or features remains limited. Attention mechanisms address this
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by assigning dynamic weights to different elements of the input sequence, enabling the model to focus selectively
on the most relevant information. Multi-head attention combined with CNN-LSTM layers has been shown to
reduce mean absolute error significantly (MAE) in hourly pollutant forecasting, enhancing interpretability and
long-range dependency modeling (Liang et al., 2025). This makes attention-based hybrids particularly suitable
for urban contexts, where pollution dynamics are influenced by a mixture of recurrent cycles (traffic, industry)
and episodic events (wildfires, weather inversions).

Hybrid Statistical-Deep Learning Approaches: Another line of work combines classical statistical methods
such as ARIMA with CNN-LSTM networks. Statistical models capture linear and seasonal trends efficiently,
while neural architectures model nonlinear interactions and complex dependencies. This ensemble strategy
improves robustness and provides better generalization across heterogeneous datasets. Advanced versions also
incorporate metaheuristic optimization techniques, such as quantum-behaved particle swarm optimization, to fine-
tune hyperparameters dynamically and further enhance performance (Lv et al., 2024).

In summary, hybrid architectures represent a state-of-the-art approach to time series forecasting. By
integrating convolutional feature extraction, recurrent memory, and adaptive attention, these models provide a
richer representation of pollutant dynamics and offer a promising path toward more reliable air quality
management systems.

2.3. Tools and Frameworks for Implementation
2.3.1 Deep Learning Frameworks:

TensorFlow provides the tf.keras.layers. LSTM layer, designed to run efficiently on GPUs and TPUs. It
includes key settings such as return_sequences, which retains outputs from each time step, and stateful, which
carries memory across batches, allowing the model to learn long-term patterns without resetting the network
(Abadi et al., 2016). TensorFlow also provides the tf.data module to build data pipelines that read, preprocess,
and organize time-series windows in parallel, thereby accelerating model training by minimizing input delays
(Abadi et al., 2016).

Keras, integrated into TensorFlow, simplifies the construction of LSTM networks through its Sequential
model and functional API. Layers such as LSTM, Dropout, and Dense can be combined with loss functions like
mean squared error to test different model architectures quickly. Training can be optimized using callbacks such
as Early Stopping, which halts training when performance stops improving, and Model Checkpoint, which saves
the best-performing model (Chollet, 2015).

PyTorch, on the other hand, provides the nn.LSTM class and a dynamic computation graph that enhances
debugging. Since the network structure is constructed step by step during execution, users can inspect gradients
in real time using tools such as print or tensorboardX. PyTorch’s Datal.oader and Dataset utilities allow flexible
data handling, while its autograd system automates the gradient calculation required for training LSTMs with
backpropagation through time (Paszke et al., 2019). A general comparison of deep learning frameworks applied
to LSTM models is presented in Figure 4.

. Input: [(None, 1, 365)]
Istm input | Input layer
Qutput: [(Mone, 1, 365)]
‘, Keras
| t:
Istrm LSTM npu [(None, 1, 365)]
Output: [(None, 300)]
v
Input: [(None, 300)]
dropout Dropout
Qutput: [(None, 300)]
\ 4
) input [(None, 300] TensorFlow
ense Dense
Output: [(None, 1)]

Figure 4. General view of deep learning frameworks to LSTM. Source: Own elaboration

2.3.2 Deployment and Monitoring:
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Docker packages the LSTM model and its dependencies into a lightweight container, ensuring consistent
execution across environments. This configuration includes installing essential libraries such as TensorFlow and
deploying a REST API to handle PM data inputs and return predictions (Abadi et al., 2016; Chollet, 2015; Docker
Inc., 2020).

MLflow tracks training parameters, metrics, and artifacts, while its Model Registry streamlines the
deployment of the best-performing LSTM version to production environments (Zaharia et al., 2020). TensorBoard
supports real-time monitoring through dashboards that visualize loss, mean absolute error (MAE), model
structure, and layer behavior, thereby facilitating hyperparameter tuning (TensorFlow Dev Team, 2019).

Google Colab provides a collaborative, cloud-based environment with free access to GPUs and TPUs,
supporting data processing and model training with libraries such as Pandas, NumPy, and Keras (Chollet, 2015;
Google, 2025; Google Research, 2025; McKinney, 2010; Pedregosa et al., 2011; van der Walt et al., 2011).
Together, these tools enable controlled deployment, monitoring, and optimization of the LSTM model.

2.4 PM2.5 and PM10 Pollutants

Particulate matter (PM) comprises a heterogeneous mixture of solid particles and liquid droplets suspended
in the atmosphere. It is classified by acrodynamic diameter into PMz.s (< 2.5 um) and PMio (< 10 um) fractions,
according to their ability to penetrate the respiratory system and their atmospheric behavior (Funcion Publica de
Colombia, 2015). These particles originate from primary sources such as fossil fuel combustion, industrial
processes, biomass burning, and vehicular emissions. They are also produced secondarily through chemical
reactions involving gaseous pollutants in the atmosphere (EPA, 2023; Area Metropolitana de Bogota, 2025). Due
to their smaller size, PM2.s particles can reach the pulmonary alveoli and remain suspended for days or even
weeks, traveling long distances. In contrast, PMo particles generally settle within minutes or hours (McKinney,
2010).

Chronic exposure to PM.s has been linked to increased incidence of cardiovascular and respiratory diseases,
lung cancer, and premature mortality, given its ability to cross from the alveoli into the bloodstream (WHO, 2021;
EPA, 2023). In Europe, approximately 238,000 premature deaths were attributed to PM..s in 2020, increasing to
more than 253,000 in 2021, highlighting its significant public health burden (Ministerio de Ambiente y Desarrollo
Sostenible, 2017, 2025). Beyond mortality, both PMz.s and PMie are associated with substantial morbidity,
including asthma exacerbations, chronic obstructive pulmonary disease (COPD), and reduced lung function,
particularly among children, the elderly, and vulnerable populations (IDEAM, 2021).

In Bogota, average hourly concentrations of PMz.s and PMio frequently exceed 25 pg/m® and 50 pg/m?,
respectively, underscoring the urgent need for robust predictive models to support local air quality management
(Area Metropolitana de Bogota, 2025).

2.5 Regulation and Legislation

The 2023 report from the Bogota Air Quality Monitoring Network (RMCAB) indicates that PMa.s and PMio
concentrations at Fontibon and Puente Aranda stations frequently exceeded daily thresholds. Annual averages for
PM:z.s reached 9.4 pg/m® and 11.2 pg/m?, with up to 5.8% of days surpassing the 37 pg/m? limit. PMio levels
averaged 38.6 ng/m* and 42.3 pg/m3, with exceedances reaching 12.3%, thereby breaching the regulatory ceiling
of 5% (Area Metropolitana de Bogota, 2025). Pollution peaks such as PMo levels above 110 pg/m? in April 2020
and PM:.s concentrations up to 45 pg/m? in September 2023 were linked to wildfires and thermal inversions (Area
Metropolitana de Bogota, 2025). These values substantially exceed World Health Organization recommendations
of 5 ng/m? for PMz.s and 15 pg/m?® for PMio (WHO, 2021; EPA, 2023).

Resolution 2254 of 2017 classifies 24-hour PM concentrations into Prevention, Alert, and Emergency
categories, with frequent Alert-level exceedances triggering contingency measures under Decree 1076 of 2015
(Alcaldia Mayor de Bogota, 2017; Funcién Publica de Colombia, 2015). By 2030, daily limits are expected to
decrease to 22 pg/m* for PMa.s and 45 ug/m?® for PMio, requiring significant reductions compared to current
averages (Alcaldia Mayor de Bogota, 2017; Ministerio de Ambiente y Desarrollo Sostenible, 2017).

Nevertheless, the persistence of Alert-level exceedances up to 12.3% of the year suggests that without
predictive systems, meeting the regulatory target of fewer than 2% exceedance days will be unlikely (Alcaldia
Mayor de Bogota, 2017). One promising solution is the integration of long short-term memory (LSTM) neural
networks (Hochreiter & Schmidhuber, 1997; Bengio, Simard, & Frasconi, 1994; Pascanu, Mikolov, & Bengio,
2013), implemented in TensorFlow and Keras (Abadi et al., 2016; Chollet, 2015), and trained on hourly RMCAB
data (Area Metropolitana de Bogotd, 2025). Such systems could forecast PM concentrations 24—72 hours in
advance, enabling timely alerts, informing Air Quality Index communications, and improving regulatory
enforcement (Franceschi, Cobo, Figueredo, et al., 2018; Casallas Garcia, Ferro, Celis Mayorga, et al., 2021;
Graves et al., 2006; Gers, Schraudolph, & Schmidhuber, 2002).
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Table 1 summarizes the international guidelines and national regulations that frame air quality management
in Bogota. While WHO recommendations and U.S. standards set stringent health-based limits, current Colombian
regulations, particularly Resolution 2254 of 2017, establish higher thresholds and a gradual path toward stricter
2030 targets. Complementary instruments such as Decree 1076 of 2015 provide contingency protocols, while
recent updates from the Ministry of Environment emphasize enforcement and alignment with international best
practices. The persistent gap between measured concentrations and these standards highlights the urgent need for
predictive modeling approaches, which motivates the methodological framework presented in the following
section.

Table 1. Regulatory and reference thresholds for PM,.s and PMo

Standard/Regulation PM..s (ng/m?) PMio (ng/m?) Type of Notes / Applicability
Limit
WHO Guidelines 5 (annual), 15 15 (annual),45 Reference  Global health-based recommendations.
(2021) (24h) (24h)
U.S. EPA (2023) 12 (annual), 35 50 (24h) Regulatory U.S. National Ambient Air Quality
(24h) Standards (NAAQS).
Resolution 2254/2017 37 (24h), 22 75 (24h); 45  Regulatory Defines Prevention, Alert, and
(Colombia) (24h) projected  (24h) projected Emergency categories. Establishes a
by 2030 by 2030 progressive reduction schedule toward
2030.
Decree 1076/2015 — (no numeric — (no numeric Regulatory  Establishes contingency protocols and
(Colombia) values) values) framework  environmental management measures

when Resolution 2254/2017 thresholds
are exceeded.

MinAmbiente (2025) — (no new — (no new Policy Provides progress reports, highlights
thresholds) thresholds) update enforcement challenges, and supports
alignment with stricter international
standards.

Source: Own elaboration.

3. Material and methods

This section presents a practical approach for implementing a predictive model of hourly PMz.s and PMio
concentrations to anticipate pollution episodes and support decision-making in air quality management. Hourly
data provided by the Bogota Air Quality Monitoring Network (RMCAB) were used to construct 24-hour temporal
windows as input to a long short-term memory (LSTM) network, following the architecture originally proposed
by Hochreiter and Schmidhuber (1997). The proposed implementation aims to provide environmental authorities
and the broader community with an automated and reusable tool capable of generating early warnings and
informing mitigation strategies before regulatory thresholds are exceeded (Area Metropolitana de Bogota, 2025).

The workflow of the proposed methodology, from data acquisition to model deployment and monitoring, is
summarized in Figure 5.

‘ Workflow: LSTM-based PM..- and PM:. Prediction

(ngi‘g hc.fl‘,lﬁf g’:.]‘ 2 Windowing Training & Validation Deployment
Pl.c) - (24h sequences) (EartyStopping, Checkpoints) (Docker + REST API)
— -
I
(Clzgirﬁnzmnﬂgfrﬁiﬁgghgon Model Construction Evaluation Monitoring
missfng values) ’ (LSTM in TensorFlow/Keras) (RMSE, MAE, R) (MLflow, Tensorgoard)

Figure 5. Workflow for the implementation of the LSTM-based PM..s and PMio prediction model. Source:
Own Elaboration

3.1. Preliminary Tests
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Before adopting the LSTM architecture, preliminary experiments were conducted using basic recurrent
neural networks (RNNs) trained on progressively larger hourly windows of PM..s and PMio data. However,
performance gains were minimal. These models were affected by the vanishing gradient problem, in which deeper
layers receive negligible learning signals, limiting the network’s ability to capture long-term dependencies
(Bengio et al., 1994; Pascanu et al., 2013).

Subsequently, a simple LSTM model was tested on the training dataset alone, without validation or early
stopping. Although the LSTM design mitigates vanishing gradients, this version exhibited clear overfitting: the
network memorized training sequences rather than learning generalizable patterns, resulting in poor predictive
performance.

A third test trained LSTMs for 500 epochs without Early Stopping. This configuration led to uncontrolled
weight growth, producing unstable behavior and highly unreliable predictions. Finally, experiments were
conducted to evaluate different network sizes by varying the number of LSTM units and adding dense layers.
Results showed that tuning was highly sensitive: larger or deeper networks required longer training times and
often underperformed, while overly simple networks failed to capture relevant temporal dynamics.

Based on these findings, the final configuration was selected: a single LSTM layer with 64 units, followed
by two output layers, with Early Stopping and a train—validation split to ensure reliable, stable results.

3.2. Data Acquisition and Preparation

The data for this study was taken from the official Bogota Air Quality Monitoring System (RMCAB) [8],
which provides hourly measurements of pollutants like PMz.s and PMio. These are the main variables predicted
by the model. After downloading, the data was organized in Excel files, with each row showing one hour of
measurements and columns for date, time, station, PMz.s, and PMio. To train the LSTM model, the data was
grouped into 24-hour windows for each pollutant, to predict the next hour’s value. For early testing, only 48 hourly
records were used 24 for training and 24 for validation. This small dataset helped verify the model’s structure,
loss functions, and behavior without requiring long processing times. Once validated, this setup can be easily
expanded using more RMCAB data [8] to improve the model’s accuracy and reliability.

3.3. Data Loading and Train/Validation Split

Data were imported from the RMCAB dataset, stored in Excel files. Each record included a timestamp,
monitoring station, and pollutant concentrations (PM:.s and PM.o). A predefined Set column classified each record
as Train or Validation, ensuring reproducible partitioning and avoiding information leakage between training and
evaluation subsets (Area Metropolitana de Bogota, 2025; WHO, 2021). This strategy guarantees that validation
metrics reflect true performance on unseen data, an essential principle for environmental time series modeling.

3.4. Min—Max Normalization Based on Training Set

To stabilize gradients during training and accelerate convergence of the Adam optimizer, a Min—-Max
normalization was applied using only the training set statistics (Abadi et al., 2016; van der Walt, Colbert, &
Varoquaux, 2011). The transformation scaled pollutant values into the range [0, 1], while an inverse function
restored predictions to absolute concentrations in pg/m?. This step is critical for interpreting outputs in physical
units and evaluating compliance with regulatory thresholds.

3.5. Generating Sliding Windows (SEQUENCE — X, y)

The dataset was structured into overlapping sliding windows of 23 hours, with each sequence used to predict
pollutant concentrations at the subsequent hour. Formally, given a normalized time series X, training samples were
constructed as shown in Equation 1.

1) Xe ={Xe—23, o Xeo1d Vi =X,
This design resulted in three-dimensional input tensors of shape (n_samples, 23, 2), where each row
contained temporal sequences for PMz.s and PMio. Such representation allowed the LSTM network to capture

both short- and medium-term temporal dependencies while maintaining manageable computational complexity
(Hochreiter & Schmidhuber, 1997).

3.6. Definition of the Multi-Output LSTM Model
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The predictive architecture was implemented in TensorFlow/Keras using the functional API (Abadi et al.,
2016; Chollet, 2015). It consisted of:
e  One LSTM layer with 64 hidden units.
e  Two independent dense layers, each producing a linear output: one for PM2.s and one for PMuo.
e  Mean squared error (MSE) loss and mean absolute error (MAE) metrics computed separately for
each pollutant.
This shared-encoder design leverages common temporal representations across pollutants while allowing
pollutant-specific fine-tuning in the output heads.

3.7. Training with EarlyStopping

Model training was configured for 50 epochs with a batch size of 16. An EarlyStopping callback monitored
validation loss and terminated training if no improvement occurred after five consecutive epochs, restoring the
best-performing weights. This regularization technique reduced overfitting, shortened training time, and improved
generalization, particularly relevant for environmental datasets subject to seasonal variability and noise (Chollet,
2015).

3.8. Inspecting LSTM Layer Weights

To ensure proper model construction, internal weights of the LSTM layer were inspected. As expected, the
model contained three distinct parameter groups: (i) kernel matrices mapping inputs to gates, (ii) recurrent kernels
mapping hidden states to gates, and (iii) biases. Their dimensionality confirmed the presence of input, forget, cell,
and output gates (Gers, Schraudolph, & Schmidhuber, 2002), validating the architecture’s capacity to model long-
term dependencies.

3.9. Next-Day Prediction

Finally, the model was tested by predicting pollutant concentrations one hour ahead using the last validation
sequence. Predictions were denormalized to pg/m?, producing real-world interpretable values. This simulation
demonstrates how the system could serve as an early warning tool, issuing daily forecasts of PMz.s and PMio levels
to support regulatory actions such as Prevention or Alert phases (Area Metropolitana de Bogota, 2025; Alcaldia
Mayor de Bogota, 2017).

4. Results
4.1. Model Training and Convergence

The final multi-output LSTM network consisted of 17,282 trainable parameters distributed across one
recurrent layer with 64 hidden units and two independent dense output layers (PMz.s and PMio). As shown in

Figure 6, the model summary, training history, and an example prediction illustrate the gradual decrease in loss
functions and the stabilization achieved during validation.
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Model: "LSTM PM_Model™

Layer (type) Output Shape Param # | Connected to |
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Figure 6. Prediction results summary and loss stabilization. Source: Own elaboration

The final multi-output LSTM network consisted of 17,282 trainable parameters distributed across one
recurrent layer with 64 hidden units and two independent dense output layers (PMa.s and PMio). Figure 6 presents
the model summary, training history, and an example prediction.

During training, the total loss decreased steadily over the first 1012 epochs, after which improvements
slowed and convergence was reached. Validation losses generally followed the same downward trend, though
with fluctuations that reveal challenges in generalization, a common limitation in environmental forecasting with
deep learning (Franceschi et al., 2018; Casallas Garcia et al., 2021). The EarlyStopping mechanism reduced
unnecessary computation, but overall performance suggests that the model has not yet reached stable convergence
across pollutants (Chollet, 2015).

At the pollutant level, PM..s showed consistently lower errors, with a mean absolute error (MAE) below
0.01 on a normalized scale. In contrast, PMio remained considerably more variable, stabilizing around an MAE
of 0.19. This discrepancy indicates that while the LSTM can capture short-term fluctuations for PM..s, its
predictive accuracy for PMuo is still limited, reflecting both the complexity of PMio dynamics and the restricted
size of the training dataset (WHO, 2021; EPA, 2023).

To further analyze model behavior, the evolution of one representative weight (W[0,0]) in the LSTM layer
was tracked across epochs. As shown in Figure 7, the weight values gradually stabilized, reflecting the network's
adjustment of its memory capacity to retain temporal patterns (Hochreiter & Schmidhuber, 1997; Gers,
Schraudolph, & Schmidhuber, 2002).
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Figure 7. Evolution of weight W[0,0] in the LSTM layer during training, showing gradual stabilization.
Source: Own elaboration.

4.2. Example Prediction

To illustrate model output, the last validation sequence was used for next-hour forecasting. After
denormalization, the system predicted PMz.s = 8.48 ug/m* and PMio = 23.92 pg/m?. These values are plausible
within the range of background concentrations in Bogota (Area Metropolitana de Bogota, 2025), showing that the
network can reproduce general trends in the RMCAB monitoring data.

However, this single-case example cannot be interpreted as robust validation. The prediction corresponds to
relatively stable conditions and may not generalize to episodes of rapid change, such as wildfires or traffic peaks
(Ministerio de Ambiente y Desarrollo Sostenible, 2017; IDEAM, 2021). At this stage, the model approximates
baseline conditions but lacks the precision needed for reliable operational use.

4.3. Comparison with Baselines

The LSTM model was compared against preliminary baselines, including simple RNNs and persistence
models. Table 2 summarizes the approximate training and validation losses observed during convergence, together
with short explanations of each baseline to ensure accessibility for non-specialist readers.

Table 2. Loss comparison across models (normalized scale)

Model PM:.s Loss PMio Loss Total Loss Description

Baseline model that assumes the next concentration will
be equal to the last observed value. Performs well under

Persistence 0.15 022 0.37 stable conditions but fails during sudden changes or
pollution spikes.
Simple A basic recurrent neural network that captures temporal
RNN 0.12 0.21 0.33 dependencies but is limited by the vanishing gradient
problem.
Proposed Model with long-term memory mechanisms that
LSTM 0.0019 0.0359 0.037 significantly improves PM..s predictions and provides

moderate gains for PMio.

Source: Own elaboration

As illustrated in Figure 8, MAE trajectories for PM..s reached low and stable levels, while PMio remained
more variable, with significant fluctuations even at later epochs. These results confirm that although the LSTM
outperforms baselines, especially for PM..s, it still struggles to model pollutants with episodic or localized
dynamics (Franceschi et al., 2018).
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Figure 8. Mean Absolute Error (MAE) curves for PM..s and PMio across training and validation sets.
Source: Own elaboration.

4.4. Implications for Air Quality Management

From a regulatory standpoint, even the limited ability of the LSTM to predict pollutant concentrations one
hour ahead provides a useful initial step toward data-driven early-warning systems (Alcaldia Mayor de Bogota,
2017; MinAmbiente, 2017). In principle, the framework could be extended to 24—72 hour horizons, which would
align with the contingency plans established under Resolution 2254 of 2017.

However, at its current stage, the methodology must be regarded strictly as a proof of concept. Accuracy
limitations, the absence of meteorological covariates, and the relatively small dataset restrict its immediate
applicability for operational air quality management. With further development, including hybrid architectures
(CNN-LSTM, attention mechanisms) and the integration of weather data (Casallas Garcia et al., 2021), the system
could evolve into a practical decision-support tool.

5. Limitations

Although the results demonstrate the potential of LSTM networks for air quality forecasting in Bogota,
several limitations restrict the generalizability and operational use of this proof of concept. First, the input space
was limited to pollutant concentrations alone. The exclusion of meteorological variables such as temperature,
relative humidity, wind speed, and atmospheric pressure reduces the model’s ability to account for external drivers
of particulate matter dynamics. These variables are known to strongly influence dispersion, accumulation, and
chemical transformation processes, and their absence partially explains the weaker performance observed for
PMo.

Second, the size of the dataset constrained the training process. Although the Bogota Air Quality Monitoring
Network provides continuous hourly measurements, the relatively short historical window available for this study
limited the diversity of pollution scenarios included in training and validation. This scarcity increases the risk of
overfitting and reduces the robustness of the model across seasons and atypical conditions.

Third, the model's capacity to generalize to real-world scenarios remains limited. Situations such as wildfire
smoke intrusions, holiday traffic peaks, or industrial events often cause abrupt changes in pollutant concentrations
that the current model struggles to capture. Without extensive testing on such extreme events, the predictive
accuracy demonstrated here should not be interpreted as readiness for operational deployment.

In summary, the model should be regarded as a preliminary step that demonstrates feasibility rather than as
a reliable decision-support tool. Future work must address these limitations by incorporating meteorological

https://doi.org/10.70469/ALBUS.017 www.albus.lat



Gonzalez Torres et al. | Modeling and prediction of PM2.s and PM.o particles at urban stations 13

covariates, expanding the dataset through longer monitoring periods, and validating the approach under diverse
real-world conditions.

6. Future development

Building on the limitations identified, the next stage of this research involves the full implementation of the
intelligent air quality monitoring system illustrated in Figure 9. The proposed framework expands the current
LSTM-based prediction model into a comprehensive decision-support platform that integrates data storage,
interactive interfaces, and artificial intelligence components. First, the system will connect the LSTM model with
a database infrastructure designed to manage large volumes of historical air quality records, ensuring efficient
storage, retrieval, and preprocessing of RMCAB data. A user interface will provide real-time interaction with
predictions. At the same time, integration with a large language model (LLM) such as GPT-3.5, coupled with a
retrieval-augmented generation (RAG) module, will enable intelligent responses grounded in both scientific
evidence and legal frameworks (Hochreiter & Schmidhuber, 1997; Pascanu, Mikolov, & Bengio, 2013; Chollet,
2015; Gers, Schraudolph, & Schmidhuber, 2002). Together, these elements will transform the model into an
intelligent monitoring assistant capable not only of predicting pollutant levels but also of providing explanations
and actionable recommendations to the public and policymakers.

Second, to improve predictive accuracy, meteorological variables such as temperature, humidity, and
atmospheric pressure will be incorporated. These factors are known to influence particulate matter dynamics
strongly, and their integration will enable the model to capture environmental drivers of pollution more effectively
(Pascanu et al., 2013; World Health Organization, 2021; Casallas Garcia et al., 2021). Additionally, longer training
datasets covering up to 60 days of historical RMCAB records will be stored in an SQLite database, enhancing the
model’s ability to identify seasonal cycles and improve long-term forecasting performance (Abadi et al., 2016;
Franceschi et al., 2018; Zaharia et al., 2020).

Third, the development of an interactive assistant powered by LLMs will provide a natural language interface
for interpreting model outputs. Users will be able to query the system through a graphical interface, receiving
plain-language explanations of forecasted pollution levels, automatic recommendations based on scientific
knowledge, and context-specific references to regulatory frameworks such as Resolution 2254 of 2017 (Alcaldia
Mayor de Bogota, 2017; Ministerio de Ambiente y Desarrollo Sostenible, 2017). A RAG engine will ensure that
responses are enriched with information retrieved from legal databases and scientific articles, thus improving
transparency and reliability (Chollet, 2015; Docker Inc., 2020; U.S. EPA, 2023).

In summary, the proposed developments aim to evolve the predictive model into a comprehensive early
warning and advisory system aligned with international sustainability agendas. By integrating LSTMs,
meteorological factors, long-term historical data, and intelligent assistants, the platform will contribute to
achieving Sustainable Development Goal 13 (Climate Action) and support Bogota’s efforts to reduce exceedance
days of PMz.s and PMio by 2030 (Ministerio de Ambiente y Desarrollo Sostenible, 2025).
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Figure 9. Process diagram for a prediction and recommendations system for PMa.s and PMio. Source: Own
elaboration

6. Conclusions

This study developed and tested a proof-of-concept predictive system for hourly PM:.s and PMio
concentrations in Bogota, based on 24-hour temporal windows and a Long Short-Term Memory (LSTM)
architecture with 64 recurrent units and two dense output layers. Implemented in Keras/TensorFlow and trained
with data from the Bogota Air Quality Monitoring Network (RMCAB), the model outperformed simple baselines
such as persistence and basic RNNs, particularly for PMz.s. However, performance for PMio remained limited,
confirming that this research should be interpreted as an exploratory step rather than an operational forecasting
tool.

From a regulatory perspective, the system demonstrates potential as a foundation for early-warning
frameworks aligned with Resolution 2254 of 2017. Nonetheless, its current accuracy and generalizability are
constrained by several limitations: the exclusion of meteorological covariates, the relatively small training dataset,
and the difficulty of capturing episodic pollution events such as wildfires or traffic peaks. Addressing these gaps
will be essential before any deployment in real-world decision-making contexts.

The study highlights the importance of reproducibility and scalability in environmental modeling. The
integration of collaborative platforms such as Google Colab, containerization through Docker, and monitoring
frameworks like MLflow and TensorBoard provides a transferable workflow for future projects.

Future work should expand the input space to include meteorological variables (temperature, humidity,
atmospheric pressure), test hybrid architectures (CNN-LSTM, attention mechanisms), and evaluate forecasts at
longer horizons (24-72 hours). Recent advances show that hybrid designs integrating CNNs, LSTMs, and
attention can substantially reduce forecasting errors and improve robustness compared to standalone models
(Zhang et al., 2023; Liang et al., 2025; Lv et al., 2024). Incorporating these strategies will be essential for
improving predictive accuracy and moving from experimental prototypes toward practical systems for air quality
management.

In summary, while the results remain preliminary, this research contributes an initial step toward data-driven
air quality forecasting in Bogota. It offers both methodological lessons and a pathway for developing more
reliable, interpretable, and impactful predictive systems that can ultimately support public health strategies,
regulatory compliance, and broader sustainability goals, including Sustainable Development Goal 13 (Climate
Action).

6.1. Managerial Implications

For policymakers and environmental authorities, this research illustrates how machine learning can
eventually support proactive air quality management in Bogota. Even at a proof-of-concept stage, the framework
points to the possibility of using LSTM-based models to anticipate pollution episodes and align responses with
Resolution 2254 of 2017. If refined and validated, such tools could guide contingency measures, improve
communication through Air Quality Index platforms, and foster greater public awareness. The study, therefore,
highlights a pathway for integrating predictive analytics into regulatory practice while recognizing that further
development is necessary before operational adoption.

6.2. Theorical Implications

From an academic standpoint, this work contributes to the literature on deep learning for environmental
forecasting by adapting a multi-output LSTM to simultaneously predict PMz.s and PMi. This approach
underscores the value of shared representations in time-series modeling and demonstrates how recurrent
architectures can be tailored to complex urban datasets. Beyond the model itself, the use of reproducible tools
such as TensorFlow, Docker, and MLflow emphasizes the importance of transparent, scalable workflows in
applied machine learning research. These insights open avenues for future studies exploring hybrid neural
architectures and the integration of meteorological and regulatory data, advancing both machine learning
methodology and environmental science.

References:

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... Kudlur, M. (2016). TensorFlow: A system for large-scale
machine learning. In *Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16)* (pp.265-283). USENIX Association.
https://www.usenix.org/conference/osdil 6/technical-sessions/presentation/abadi

Alcaldia Mayor de Bogota. (2017). Resolucion 2254 de 2017 Ministerio del Medio Ambiente. SISJUR. Retrieved from
https://www.alcaldiabogota.gov.co/sisjur/normas/Normal.jsp?i=82634

https://doi.org/10.70469/ALBUS.017 www.albus.lat


https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=82634

Gonzalez Torres et al. | Modeling and prediction of PM2.s and PM.o particles at urban stations 15

Area Metropolitana de Bogota. (2025). Sistema de Monitoreo de la Calidad del Aire de Bogota (RMCAB). Retrieved from
http://rmcab.ambientebogota.gov.co/dynamicTabulars/index

Casallas Garcia, A., Ferro, C., & Celis Mayorga, N. (2021). Long short-term memory artificial neural network approach to
forecast meteorology and PMo:.s local variables in Bogota, Colombia. Modeling Earth Systems and Environment,
8(3), 2951-2964. https://doi.org/10.1007/s40808-021-01274-6

Chollet, F. (2015). Keras [Computer software]. GitHub. https://github.com/fchollet/keras

Docker Inc. (2020). What is Docker? Retrieved from https://docs.docker.com/get-started/docker-overview/

Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PMio and PM..s concentrations
in Bogota, Colombia, using artificial neural networks, principal component analysis, and k-means clustering.
Atmospheric Pollution Research, 9(5), 912-922. https://doi.org/10.1016/j.apr.2018.02.006

Funcién Publica de Colombia. (2015). Decreto 1076 de 2015: Sector Ambiente y Desarrollo Sostenible. Gestor Normativo.
Retrieved from https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. *Journal
of Machine Learning Research, 3*, 115-143. https://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf

Google. (2025). Welcome to Colab. Colaboratory. Retrieved from https://colab.research.google.com/

Google Research. (2025). Colaboratory FAQ. Retrieved from https://research.google.com/colaboratory/fag.html

Graves, A., Fernandez, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling
unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International Conference on
Machine Learning (ICML ’06) (pp. 369-376). ACM. https://doi.org/10.1145/1143844.1143891

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
https://doi.org/10.1162/nec0.1997.9.8.1735

Instituto de Hidrologia, Meteorologia y Estudios Ambientales (IDEAM). (2021). *Proporcién de datos del indice de Calidad
del Aire (ICA), Bogota* [Informe técnico].
http://archivo.ideam.gov.co/documents/11769/641368/2.01+HM+%C3%ADndice+calidad-+aire.pdf/5130ffb3-
albf-4d23-a663-b4c51327¢cc05

McKinney, W. (2010). Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science
Conference (pp. 51-56). SciPy. https://doi.org/10.25080/Majora-92bf1922-00a

Ministerio de Ambiente y Desarrollo Sostenible. (2017). Resolucion 2254 de 2017. Retrieved from
https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-2254-de-2017.pdf

Ministerio de Ambiente y Desarrollo Sostenible. (2025). Contaminacion atmosférica. Retrieved from
https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/contaminacion-atmosferica/

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... Chintala, S. (2019). PyTorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, &
R. Garnett (Eds.), *Advances in Neural Information Processing Systems* (Vol. 32). Curran Associates, Inc.
https://papers.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92{2bfa917012727740-Paper.pdf

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In S. Dasgupta & D.
McAllester (Eds.), *Proceedings of the 30th International Conference on Machine Learning* (Vol. 28, pp. 1310—
1318). PMLR. https://proceedings.mlr.press/v28/pascanul3.html

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. *Journal of  Machine Learning Research, 12%, 2825-2830.
https://jmlr.org/papers/volumel2/pedregosal l1a/pedregosal 1a.pdf

U.S. Environmental Protection Agency. (2023). Particulate matter (PM) basics. U.S. Environmental Protection Agency.
Retrieved September 16, 2025, from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation.
Computing in Science & Engineering, 13(2), 22-30. https://doi.org/10.1109/MCSE.2011.37

World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM-.s and PMio), ozone, nitrogen
dioxide, sulfur dioxide and carbon monoxide. Geneva: WHO. Retrieved from
https://apps.who.int/iris/handle/10665/345329

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, M., Konwinski, A., & Xin, R. (2020). Accelerating the machine
learning lifecycle with MLflow. IEEE Data Engineering Bulletin, 43(3), 34-45. Retrieved from
https://people.cecs.berkeley.edu/~matei/papers/2018/icee_mlflow.pdf

Duan, J., Gong, Y., Luo, J., & Zhao, Z. (2023). Air-quality prediction based on the ARIMA-CNN-LSTM combination model
optimized by dung beetle optimizer. Scientific Reports, 13(1), 12127. https://doi.org/10.1038/s41598-023-36620-4

Sreenivasulu, T., & Mokesh Rayalu, G. (2025). Accurate hourly AQI prediction using temporal CNN-LSTM—-MHA+GRU:
A case study of seasonal variations and pollution extremes in Visakhapatnam, India. Results in Engineering, 27,
106303. https://doi.org/10.1016/j.rineng.2025.106303

Nguyen, A. T., Pham, D. H., Oo, B. L., Ahn, Y., & Lim, B. T. H. (2024). Predicting air quality index using attention hybrid
deep learning and quantum-inspired particle swarm optimization. Journal of Big Data, 11, Article 71.
https://doi.org/10.1186/s40537-024-00926-5

https://doi.org/10.70469/ALBUS.017 www.albus.lat


http://rmcab.ambientebogota.gov.co/dynamicTabulars/index
https://doi.org/10.1007/s40808-021-01274-6
https://github.com/fchollet/keras
https://docs.docker.com/get-started/docker-overview/
https://doi.org/10.1016/j.apr.2018.02.006
https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153
https://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf
https://colab.research.google.com/
https://research.google.com/colaboratory/faq.html
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1162/neco.1997.9.8.1735
http://archivo.ideam.gov.co/documents/11769/641368/2.01+HM+%C3%ADndice+calidad+aire.pdf/5130ffb3-a1bf-4d23-a663-b4c51327cc05
http://archivo.ideam.gov.co/documents/11769/641368/2.01+HM+%C3%ADndice+calidad+aire.pdf/5130ffb3-a1bf-4d23-a663-b4c51327cc05
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-2254-de-2017.pdf
https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/contaminacion-atmosferica/
https://papers.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.mlr.press/v28/pascanu13.html
https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://doi.org/10.1109/MCSE.2011.37
https://apps.who.int/iris/handle/10665/345329
https://people.eecs.berkeley.edu/%7Ematei/papers/2018/ieee_mlflow.pdf
https://doi.org/10.1038/s41598-023-36620-4
https://doi.org/10.1016/j.rineng.2025.106303
https://doi.org/10.1186/s40537-024-00926-5

	1. Introduction
	2. Literature Review
	2.1. Theoretical foundations
	2.2 Hybrid Architectures for Sequential Forecasting
	2.3. Tools and Frameworks for Implementation
	2.3.1 Deep Learning Frameworks:

	2.3.2 Deployment and Monitoring:
	2.4 PM2.5 and PM10 Pollutants
	2.5 Regulation and Legislation

	3. Material and methods
	3.1. Preliminary Tests
	3.2. Data Acquisition and Preparation
	3.3. Data Loading and Train/Validation Split
	3.4. Min–Max Normalization Based on Training Set
	3.5. Generating Sliding Windows (SEQUENCE → X, y)
	3.6. Definition of the Multi-Output LSTM Model
	3.7. Training with EarlyStopping
	3.8. Inspecting LSTM Layer Weights
	3.9. Next-Day Prediction

	4. Results
	4.1. Model Training and Convergence
	4.2. Example Prediction
	4.3. Comparison with Baselines
	4.4. Implications for Air Quality Management

	5. Limitations
	6. Future development
	6. Conclusions
	6.1. Managerial Implications
	6.2. Theorical Implications

	References:

