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Abstract: This article presents a proof-of-concept system for predicting hourly 
concentrations of PM₂.₅ and PM₁₀ in Bogotá using Long Short-Term Memory (LSTM) 
neural networks. The objective is to anticipate critical pollution episodes and support 
preventive decision-making in real time. Hourly data from the Bogotá Air Quality 
Monitoring Network were structured into 24-hour time windows and used as inputs to a 
64-neuron LSTM architecture with two dense outputs for simultaneous estimation of both 
pollutants. The implementation in Keras/TensorFlow incorporated regularization 
techniques such as Early Stopping to improve model stability and reproducibility. Results 
show that while the model captures short-term fluctuations in PM₂.₅ with reasonable 
accuracy, performance for PM₁₀ remains limited, underscoring the exploratory nature of 
this study. The contribution lies in demonstrating the feasibility of recurrent neural 
networks for urban air quality forecasting and outlining pathways for future 
improvements, including the integration of meteorological covariates, larger datasets, and 
hybrid architectures such as CNN–LSTM and attention-based models. By positioning the 
work as a preliminary step, the study highlights opportunities to advance toward 
automated early warning tools aligned with current environmental regulations and the 
2030 air quality reduction goals. 
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1. Introduction 
Air pollution caused by PM₂.₅ (diameter ≤ 2.5 µm) and PM₁₀ (diameter ≤ 10 µm) particles is one of the main 

environmental risk factors for human health and the global ecosystem. It is associated with respiratory diseases, 
cardiovascular conditions, and premature mortality (World Health Organization [WHO], 2021; U.S. 
Environmental Protection Agency [EPA], 2023). 

In Bogotá, measurements from the Bogotá Air Quality Monitoring Network (RMCAB) indicate that PM₂.₅ 
and PM₁₀ concentrations at stations such as Fontibón and Puente Aranda frequently exceed WHO recommended 
thresholds. This highlights the need for tools that can anticipate critical pollution episodes (Área Metropolitana 
de Bogotá, 2025; Franceschi et al., 2018). The availability of hourly pollutant data at these stations presents an 
opportunity to develop predictive models that can inform early warning systems and support environmental policy 
decisions (Área Metropolitana de Bogotá, 2025). 

While traditional statistical methods such as ARIMA models have been used with some success for pollutant 
time series, they often lack the flexibility to capture nonlinear relationships and long-term dynamics (Franceschi 
et al., 2018). Recurrent neural networks (RNNs) provide a more adaptable approach to modeling temporal 
sequences, but they suffer from the vanishing and exploding gradient problem, which makes it difficult to learn 
long-term dependencies (Bengio, Simard, & Frasconi, 1994; Pascanu, Mikolov, & Bengio, 2013). 
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The Long Short-Term Memory (LSTM) model, introduced by Hochreiter and Schmidhuber (1997), 
overcomes these limitations through memory cells and input, forget, and output gates that regulate information 
flow and preserve gradients over time (Gers et al., 2002). Furthermore, frameworks such as TensorFlow and its 
high-level API, Keras, facilitate the definition, training, and scalability of LSTM architectures, promoting 
reproducibility of experiments and computational efficiency (Abadi et al., 2016; Chollet, 2015). 

This article proposes a general methodology based on LSTM networks implemented with Keras/TensorFlow 
for predicting PM₂.₅ and PM₁₀ concentrations at the Fontibón and Puente Aranda stations in Bogotá. The goal is 
to provide a robust and practical tool for local air quality management (Casallas García et al., 2021). 

2. Literature Review 
The prediction of atmospheric pollutant concentrations has evolved from classical statistical methods to deep 

learning approaches that can capture nonlinear patterns and complex dynamics. Models such as autoregressive 
integrated moving average (ARIMA) and exponential smoothing offer interpretability and have served as baseline 
approaches in numerous studies. However, they show limitations when dealing with time series that exhibit non-
stationary behavior or long-term dependencies (Franceschi et al., 2018; Bengio et al., 1994). 

In contrast, neural network-based methods, particularly hybrid architectures that combine convolutional 
neural networks (CNNs) with long short-term memory (LSTM) models, have demonstrated greater flexibility in 
modeling both spatial and temporal relationships. These approaches have reduced error indicators such as root 
mean square error (RMSE) and mean absolute error (MAE) compared to pure LSTMs or traditional statistical 
models (Franceschi et al., 2018; Graves et al., 2006). 

Recent studies have increasingly turned to hybrid deep learning approaches that combine convolutional, 
recurrent, and attention mechanisms to improve the accuracy of air quality forecasting. For example, Zhang et al. 
(2023) demonstrated that integrating ARIMA with CNN–LSTM models can capture both linear and nonlinear 
components of pollutant time series, achieving superior performance compared to standalone methods. Similarly, 
Liang et al. (2025) proposed a CNN–LSTM–multi-head attention–GRU architecture that significantly reduced 
forecasting errors for hourly AQI predictions, highlighting the role of attention mechanisms in capturing long-
range dependencies. Complementing these advances, Lv et al. (2024) introduced an attention-based hybrid 
framework that combines ARIMA, CNN, and LSTM with metaheuristic optimization, further emphasizing the 
trend toward multi-model ensembles in environmental forecasting. Together, these studies situate the present work 
within the broader movement toward hybrid architectures that extend beyond traditional LSTM models, and they 
underscore the need to explore CNN–LSTM and attention-based designs for more robust and generalizable 
pollutant prediction in urban contexts. 
 
2.1. Theoretical foundations 

Recurrent Neural Networks (RNNs): Recurrent Neural Networks (RNNs) process sequential data by feeding 
each output back into the network, enabling them to capture temporal dependencies, which makes them suitable 
for tasks such as speech recognition and environmental time series analysis (Graves et al., 2006; Hochreiter & 
Schmidhuber, 1997). They are typically trained using backpropagation through time (BPTT); however, this 
method is prone to vanishing or exploding gradients, which hampers their ability to learn long-term patterns 
(Bengio et al., 1994; Pascanu et al., 2013). To address this limitation, architectures such as long short-term 
memory (LSTM) and gated recurrent units (GRU) introduce gating mechanisms that regulate information flow 
and preserve gradients over long sequences (Gers et al., 2002; Hochreiter & Schmidhuber, 1997). Additionally, 
techniques such as connectionist temporal classification (CTC) enhance RNNs in tasks without strict input–output 
alignment by allowing them to label unsegmented sequence data (Graves et al., 2006). The general architecture 
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of an RNN is illustrated in Figure 1.

 
Figure 1. Architecture of a recurrent neural network. Source: Own elaboration. 

Vanishing Gradient Problem: In RNNs, backpropagation-based learning can become ineffective over long 
sequences due to the vanishing gradient problem: error signals weaken as they propagate across many time steps, 
making it difficult to capture long-term dependencies (Bengio et al., 1994). This issue is further exacerbated by 
the SoftMax function in the output layer, where gradients diminish even more as outputs approach 0 or 1, as 
illustrated in Figure 2 (Pascanu et al., 2013). Consequently, RNNs often struggle to model long-range patterns, 
such as seasonal trends in environmental data. 

Long short-term memory cells mitigate this limitation by incorporating internal memory and gating 
mechanisms that regulate information flow, allowing the network to retain relevant data over time (Gers et al., 
2002; Hochreiter & Schmidhuber, 1997). This enables LSTMs to effectively learn both short and long-term 
dependencies, making them better suited for time series forecasting tasks. 

 
Figure 2. Gradient attenuation in the SoftMax function. Source: Own elaboration. 
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LSTM Networks: Long short-term memory (LSTM) networks, introduced by Hochreiter and Schmidhuber 
(1997), were designed to solve the vanishing gradient problem found in standard RNNs. LSTMs include a memory 
cell and three gates that control the flow of information through the sequence (Hochreiter & Schmidhuber, 1997; 
Pascanu et al., 2013). 

 
Each LSTM unit includes: 
 

• An input gate to decide how much new information enters the memory, 
• A forget gate to remove unnecessary past information 
• An output gate to control what information is passed to the next layer (Pascanu et al., 2013). 

 
These gates enable LSTMs to retain important information across long sequences, unlike traditional RNNs, 

which struggle with long-term memory (Gers et al., 2002). The gates use sigmoid functions, while memory 
updates rely on the hyperbolic tangent (tanh). A key feature is the constant error carousel (CEC), which helps 
preserve gradients over time, allowing stable learning even across hundreds of time steps (Hochreiter & 
Schmidhuber, 1997; Gers et al., 2002).  

For implementation, TensorFlow offers the tf.keras.layers.LSTM layer, which runs efficiently on GPUs and 
TPUs and integrates with tf.data pipelines. Keras simplifies model design and tuning and supports callbacks such 
as Early Stopping to prevent overfitting (Abadi et al., 2016; Chollet, 2015). The internal design of an LSTM unit 
is illustrated in Figure 3. 

 
Figure 3. Structure of an LSTM unit with input, forget, and output gates.  Source: Own elaboration 

 
2.2 Hybrid Architectures for Sequential Forecasting 

Although LSTMs effectively capture temporal dependencies, recent research has emphasized the advantages 
of hybrid architectures that integrate complementary models to address the multifaceted nature of environmental 
time series. These designs combine convolutional, recurrent, and attention-based mechanisms, yielding more 
accurate and generalizable predictions compared to standalone models. 

CNN–LSTM Models: Convolutional neural networks (CNNs) are widely used for extracting local patterns 
in structured data. When applied to time series, one-dimensional convolutions detect short-term fluctuations and 
seasonal cycles, which can then be passed to an LSTM layer to capture sequential dependencies over longer 
horizons. This combination reduces the burden on LSTMs to model fine-grained variations, thereby improving 
both convergence speed and predictive accuracy (Zhang et al., 2023). In the context of air quality forecasting, 
CNN–LSTM models have shown improved robustness to noisy datasets and irregular pollution episodes, 
outperforming both pure CNNs and LSTMs. 

Attention-based Hybrids: While LSTMs and CNN–LSTMs capture temporal dependencies, their ability to 
distinguish the relative importance of time steps or features remains limited. Attention mechanisms address this 
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by assigning dynamic weights to different elements of the input sequence, enabling the model to focus selectively 
on the most relevant information. Multi-head attention combined with CNN–LSTM layers has been shown to 
reduce mean absolute error significantly (MAE) in hourly pollutant forecasting, enhancing interpretability and 
long-range dependency modeling (Liang et al., 2025). This makes attention-based hybrids particularly suitable 
for urban contexts, where pollution dynamics are influenced by a mixture of recurrent cycles (traffic, industry) 
and episodic events (wildfires, weather inversions). 

Hybrid Statistical–Deep Learning Approaches: Another line of work combines classical statistical methods 
such as ARIMA with CNN–LSTM networks. Statistical models capture linear and seasonal trends efficiently, 
while neural architectures model nonlinear interactions and complex dependencies. This ensemble strategy 
improves robustness and provides better generalization across heterogeneous datasets. Advanced versions also 
incorporate metaheuristic optimization techniques, such as quantum-behaved particle swarm optimization, to fine-
tune hyperparameters dynamically and further enhance performance (Lv et al., 2024). 

In summary, hybrid architectures represent a state-of-the-art approach to time series forecasting. By 
integrating convolutional feature extraction, recurrent memory, and adaptive attention, these models provide a 
richer representation of pollutant dynamics and offer a promising path toward more reliable air quality 
management systems. 
 
2.3. Tools and Frameworks for Implementation 
2.3.1 Deep Learning Frameworks:  

TensorFlow provides the tf.keras.layers.LSTM layer, designed to run efficiently on GPUs and TPUs. It 
includes key settings such as return_sequences, which retains outputs from each time step, and stateful, which 
carries memory across batches, allowing the model to learn long-term patterns without resetting the network 
(Abadi et al., 2016). TensorFlow also provides the tf.data module to build data pipelines that read, preprocess, 
and organize time-series windows in parallel, thereby accelerating model training by minimizing input delays 
(Abadi et al., 2016). 

Keras, integrated into TensorFlow, simplifies the construction of LSTM networks through its Sequential 
model and functional API. Layers such as LSTM, Dropout, and Dense can be combined with loss functions like 
mean squared error to test different model architectures quickly. Training can be optimized using callbacks such 
as Early Stopping, which halts training when performance stops improving, and Model Checkpoint, which saves 
the best-performing model (Chollet, 2015). 

PyTorch, on the other hand, provides the nn.LSTM class and a dynamic computation graph that enhances 
debugging. Since the network structure is constructed step by step during execution, users can inspect gradients 
in real time using tools such as print or tensorboardX. PyTorch’s DataLoader and Dataset utilities allow flexible 
data handling, while its autograd system automates the gradient calculation required for training LSTMs with 
backpropagation through time (Paszke et al., 2019). A general comparison of deep learning frameworks applied 
to LSTM models is presented in Figure 4. 

 

 
Figure 4. General view of deep learning frameworks to LSTM. Source: Own elaboration 

 
2.3.2 Deployment and Monitoring:  
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Docker packages the LSTM model and its dependencies into a lightweight container, ensuring consistent 
execution across environments. This configuration includes installing essential libraries such as TensorFlow and 
deploying a REST API to handle PM data inputs and return predictions (Abadi et al., 2016; Chollet, 2015; Docker 
Inc., 2020). 

MLflow tracks training parameters, metrics, and artifacts, while its Model Registry streamlines the 
deployment of the best-performing LSTM version to production environments (Zaharia et al., 2020). TensorBoard 
supports real-time monitoring through dashboards that visualize loss, mean absolute error (MAE), model 
structure, and layer behavior, thereby facilitating hyperparameter tuning (TensorFlow Dev Team, 2019). 

Google Colab provides a collaborative, cloud-based environment with free access to GPUs and TPUs, 
supporting data processing and model training with libraries such as Pandas, NumPy, and Keras (Chollet, 2015; 
Google, 2025; Google Research, 2025; McKinney, 2010; Pedregosa et al., 2011; van der Walt et al., 2011). 
Together, these tools enable controlled deployment, monitoring, and optimization of the LSTM model.  
 
2.4 PM2.5 and PM10 Pollutants 

Particulate matter (PM) comprises a heterogeneous mixture of solid particles and liquid droplets suspended 
in the atmosphere. It is classified by aerodynamic diameter into PM₂.₅ (≤ 2.5 µm) and PM₁₀ (≤ 10 µm) fractions, 
according to their ability to penetrate the respiratory system and their atmospheric behavior (Función Pública de 
Colombia, 2015). These particles originate from primary sources such as fossil fuel combustion, industrial 
processes, biomass burning, and vehicular emissions. They are also produced secondarily through chemical 
reactions involving gaseous pollutants in the atmosphere (EPA, 2023; Área Metropolitana de Bogotá, 2025). Due 
to their smaller size, PM₂.₅ particles can reach the pulmonary alveoli and remain suspended for days or even 
weeks, traveling long distances. In contrast, PM₁₀ particles generally settle within minutes or hours (McKinney, 
2010). 

Chronic exposure to PM₂.₅ has been linked to increased incidence of cardiovascular and respiratory diseases, 
lung cancer, and premature mortality, given its ability to cross from the alveoli into the bloodstream (WHO, 2021; 
EPA, 2023). In Europe, approximately 238,000 premature deaths were attributed to PM₂.₅ in 2020, increasing to 
more than 253,000 in 2021, highlighting its significant public health burden (Ministerio de Ambiente y Desarrollo 
Sostenible, 2017, 2025). Beyond mortality, both PM₂.₅ and PM₁₀ are associated with substantial morbidity, 
including asthma exacerbations, chronic obstructive pulmonary disease (COPD), and reduced lung function, 
particularly among children, the elderly, and vulnerable populations (IDEAM, 2021). 

In Bogotá, average hourly concentrations of PM₂.₅ and PM₁₀ frequently exceed 25 µg/m³ and 50 µg/m³, 
respectively, underscoring the urgent need for robust predictive models to support local air quality management 
(Área Metropolitana de Bogotá, 2025). 
 
2.5 Regulation and Legislation 

The 2023 report from the Bogotá Air Quality Monitoring Network (RMCAB) indicates that PM₂.₅ and PM₁₀ 
concentrations at Fontibón and Puente Aranda stations frequently exceeded daily thresholds. Annual averages for 
PM₂.₅ reached 9.4 µg/m³ and 11.2 µg/m³, with up to 5.8% of days surpassing the 37 µg/m³ limit. PM₁₀ levels 
averaged 38.6 µg/m³ and 42.3 µg/m³, with exceedances reaching 12.3%, thereby breaching the regulatory ceiling 
of 5% (Área Metropolitana de Bogotá, 2025). Pollution peaks such as PM₁₀ levels above 110 µg/m³ in April 2020 
and PM₂.₅ concentrations up to 45 µg/m³ in September 2023 were linked to wildfires and thermal inversions (Área 
Metropolitana de Bogotá, 2025). These values substantially exceed World Health Organization recommendations 
of 5 µg/m³ for PM₂.₅ and 15 µg/m³ for PM₁₀ (WHO, 2021; EPA, 2023). 

Resolution 2254 of 2017 classifies 24-hour PM concentrations into Prevention, Alert, and Emergency 
categories, with frequent Alert-level exceedances triggering contingency measures under Decree 1076 of 2015 
(Alcaldía Mayor de Bogotá, 2017; Función Pública de Colombia, 2015). By 2030, daily limits are expected to 
decrease to 22 µg/m³ for PM₂.₅ and 45 µg/m³ for PM₁₀, requiring significant reductions compared to current 
averages (Alcaldía Mayor de Bogotá, 2017; Ministerio de Ambiente y Desarrollo Sostenible, 2017). 

Nevertheless, the persistence of Alert-level exceedances up to 12.3% of the year suggests that without 
predictive systems, meeting the regulatory target of fewer than 2% exceedance days will be unlikely (Alcaldía 
Mayor de Bogotá, 2017). One promising solution is the integration of long short-term memory (LSTM) neural 
networks (Hochreiter & Schmidhuber, 1997; Bengio, Simard, & Frasconi, 1994; Pascanu, Mikolov, & Bengio, 
2013), implemented in TensorFlow and Keras (Abadi et al., 2016; Chollet, 2015), and trained on hourly RMCAB 
data (Área Metropolitana de Bogotá, 2025). Such systems could forecast PM concentrations 24–72 hours in 
advance, enabling timely alerts, informing Air Quality Index communications, and improving regulatory 
enforcement (Franceschi, Cobo, Figueredo, et al., 2018; Casallas García, Ferro, Celis Mayorga, et al., 2021; 
Graves et al., 2006; Gers, Schraudolph, & Schmidhuber, 2002). 
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Table 1 summarizes the international guidelines and national regulations that frame air quality management 
in Bogotá. While WHO recommendations and U.S. standards set stringent health-based limits, current Colombian 
regulations, particularly Resolution 2254 of 2017, establish higher thresholds and a gradual path toward stricter 
2030 targets. Complementary instruments such as Decree 1076 of 2015 provide contingency protocols, while 
recent updates from the Ministry of Environment emphasize enforcement and alignment with international best 
practices. The persistent gap between measured concentrations and these standards highlights the urgent need for 
predictive modeling approaches, which motivates the methodological framework presented in the following 
section. 

Table 1. Regulatory and reference thresholds for PM₂.₅ and PM₁₀ 

Standard/Regulation PM₂.₅ (µg/m³) PM₁₀ (µg/m³) Type of 
Limit 

Notes / Applicability 

WHO Guidelines 
(2021)  

5 (annual), 15 
(24h) 

15 (annual), 45 
(24h) 

Reference Global health-based recommendations. 

U.S. EPA (2023) 12 (annual), 35 
(24h) 

50 (24h) Regulatory U.S. National Ambient Air Quality 
Standards (NAAQS). 

Resolution 2254/2017 
(Colombia)  

37 (24h), 22 
(24h) projected 

by 2030 

75 (24h); 45 
(24h) projected 

by 2030 

Regulatory Defines Prevention, Alert, and 
Emergency categories. Establishes a 

progressive reduction schedule toward 
2030. 

Decree 1076/2015 
(Colombia) 

— (no numeric 
values) 

— (no numeric 
values) 

Regulatory 
framework 

Establishes contingency protocols and 
environmental management measures 

when Resolution 2254/2017 thresholds 
are exceeded. 

MinAmbiente (2025) — (no new 
thresholds) 

— (no new 
thresholds) 

Policy 
update 

Provides progress reports, highlights 
enforcement challenges, and supports 
alignment with stricter international 

standards. 
Source: Own elaboration.   

3. Material and methods 
 

This section presents a practical approach for implementing a predictive model of hourly PM₂.₅ and PM₁₀ 
concentrations to anticipate pollution episodes and support decision-making in air quality management. Hourly 
data provided by the Bogotá Air Quality Monitoring Network (RMCAB) were used to construct 24-hour temporal 
windows as input to a long short-term memory (LSTM) network, following the architecture originally proposed 
by Hochreiter and Schmidhuber (1997). The proposed implementation aims to provide environmental authorities 
and the broader community with an automated and reusable tool capable of generating early warnings and 
informing mitigation strategies before regulatory thresholds are exceeded (Área Metropolitana de Bogotá, 2025). 

The workflow of the proposed methodology, from data acquisition to model deployment and monitoring, is 
summarized in Figure 5. 

 
Figure 5. Workflow for the implementation of the LSTM-based PM₂.₅ and PM₁₀ prediction model. Source: 
Own Elaboration 

3.1. Preliminary Tests 
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Before adopting the LSTM architecture, preliminary experiments were conducted using basic recurrent 
neural networks (RNNs) trained on progressively larger hourly windows of PM₂.₅ and PM₁₀ data. However, 
performance gains were minimal. These models were affected by the vanishing gradient problem, in which deeper 
layers receive negligible learning signals, limiting the network’s ability to capture long-term dependencies 
(Bengio et al., 1994; Pascanu et al., 2013). 

Subsequently, a simple LSTM model was tested on the training dataset alone, without validation or early 
stopping. Although the LSTM design mitigates vanishing gradients, this version exhibited clear overfitting: the 
network memorized training sequences rather than learning generalizable patterns, resulting in poor predictive 
performance. 

A third test trained LSTMs for 500 epochs without Early Stopping. This configuration led to uncontrolled 
weight growth, producing unstable behavior and highly unreliable predictions. Finally, experiments were 
conducted to evaluate different network sizes by varying the number of LSTM units and adding dense layers. 
Results showed that tuning was highly sensitive: larger or deeper networks required longer training times and 
often underperformed, while overly simple networks failed to capture relevant temporal dynamics. 

Based on these findings, the final configuration was selected: a single LSTM layer with 64 units, followed 
by two output layers, with Early Stopping and a train–validation split to ensure reliable, stable results. 
 
3.2. Data Acquisition and Preparation  

The data for this study was taken from the official Bogotá Air Quality Monitoring System (RMCAB) [8], 
which provides hourly measurements of pollutants like PM₂.₅ and PM₁₀. These are the main variables predicted 
by the model. After downloading, the data was organized in Excel files, with each row showing one hour of 
measurements and columns for date, time, station, PM₂.₅, and PM₁₀. To train the LSTM model, the data was 
grouped into 24-hour windows for each pollutant, to predict the next hour’s value. For early testing, only 48 hourly 
records were used 24 for training and 24 for validation. This small dataset helped verify the model’s structure, 
loss functions, and behavior without requiring long processing times. Once validated, this setup can be easily 
expanded using more RMCAB data [8] to improve the model’s accuracy and reliability. 

 
3.3. Data Loading and Train/Validation Split 

Data were imported from the RMCAB dataset, stored in Excel files. Each record included a timestamp, 
monitoring station, and pollutant concentrations (PM₂.₅ and PM₁₀). A predefined Set column classified each record 
as Train or Validation, ensuring reproducible partitioning and avoiding information leakage between training and 
evaluation subsets (Área Metropolitana de Bogotá, 2025; WHO, 2021). This strategy guarantees that validation 
metrics reflect true performance on unseen data, an essential principle for environmental time series modeling. 

 
3.4. Min–Max Normalization Based on Training Set 

To stabilize gradients during training and accelerate convergence of the Adam optimizer, a Min–Max 
normalization was applied using only the training set statistics (Abadi et al., 2016; van der Walt, Colbert, & 
Varoquaux, 2011). The transformation scaled pollutant values into the range [0, 1], while an inverse function 
restored predictions to absolute concentrations in µg/m³. This step is critical for interpreting outputs in physical 
units and evaluating compliance with regulatory thresholds. 
 
3.5. Generating Sliding Windows (SEQUENCE → X, y) 

The dataset was structured into overlapping sliding windows of 23 hours, with each sequence used to predict 
pollutant concentrations at the subsequent hour. Formally, given a normalized time series X, training samples were 
constructed as shown in Equation 1. 

 
1)        𝑋𝑋𝑡𝑡 = {𝑋𝑋𝑡𝑡−23 , … ,𝑋𝑋𝑡𝑡−1},             𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡 

 
This design resulted in three-dimensional input tensors of shape (n_samples, 23, 2), where each row 

contained temporal sequences for PM₂.₅ and PM₁₀. Such representation allowed the LSTM network to capture 
both short- and medium-term temporal dependencies while maintaining manageable computational complexity 
(Hochreiter & Schmidhuber, 1997). 
 
 
3.6. Definition of the Multi-Output LSTM Model 
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The predictive architecture was implemented in TensorFlow/Keras using the functional API (Abadi et al., 
2016; Chollet, 2015). It consisted of: 

• One LSTM layer with 64 hidden units. 
• Two independent dense layers, each producing a linear output: one for PM₂.₅ and one for PM₁₀. 
• Mean squared error (MSE) loss and mean absolute error (MAE) metrics computed separately for 

each pollutant. 
This shared-encoder design leverages common temporal representations across pollutants while allowing 

pollutant-specific fine-tuning in the output heads. 
 

3.7. Training with EarlyStopping 
Model training was configured for 50 epochs with a batch size of 16. An EarlyStopping callback monitored 

validation loss and terminated training if no improvement occurred after five consecutive epochs, restoring the 
best-performing weights. This regularization technique reduced overfitting, shortened training time, and improved 
generalization, particularly relevant for environmental datasets subject to seasonal variability and noise (Chollet, 
2015). 
 
3.8. Inspecting LSTM Layer Weights 

To ensure proper model construction, internal weights of the LSTM layer were inspected. As expected, the 
model contained three distinct parameter groups: (i) kernel matrices mapping inputs to gates, (ii) recurrent kernels 
mapping hidden states to gates, and (iii) biases. Their dimensionality confirmed the presence of input, forget, cell, 
and output gates (Gers, Schraudolph, & Schmidhuber, 2002), validating the architecture’s capacity to model long-
term dependencies. 
 
3.9. Next-Day Prediction 

Finally, the model was tested by predicting pollutant concentrations one hour ahead using the last validation 
sequence. Predictions were denormalized to µg/m³, producing real-world interpretable values. This simulation 
demonstrates how the system could serve as an early warning tool, issuing daily forecasts of PM₂.₅ and PM₁₀ levels 
to support regulatory actions such as Prevention or Alert phases (Área Metropolitana de Bogotá, 2025; Alcaldía 
Mayor de Bogotá, 2017). 

4. Results 
4.1. Model Training and Convergence 

The final multi-output LSTM network consisted of 17,282 trainable parameters distributed across one 
recurrent layer with 64 hidden units and two independent dense output layers (PM₂.₅ and PM₁₀). As shown in 
Figure 6, the model summary, training history, and an example prediction illustrate the gradual decrease in loss 
functions and the stabilization achieved during validation. 
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Figure 6. Prediction results summary and loss stabilization. Source: Own elaboration 

The final multi-output LSTM network consisted of 17,282 trainable parameters distributed across one 
recurrent layer with 64 hidden units and two independent dense output layers (PM₂.₅ and PM₁₀). Figure 6 presents 
the model summary, training history, and an example prediction. 

During training, the total loss decreased steadily over the first 10–12 epochs, after which improvements 
slowed and convergence was reached. Validation losses generally followed the same downward trend, though 
with fluctuations that reveal challenges in generalization, a common limitation in environmental forecasting with 
deep learning (Franceschi et al., 2018; Casallas García et al., 2021). The EarlyStopping mechanism reduced 
unnecessary computation, but overall performance suggests that the model has not yet reached stable convergence 
across pollutants (Chollet, 2015). 

At the pollutant level, PM₂.₅ showed consistently lower errors, with a mean absolute error (MAE) below 
0.01 on a normalized scale. In contrast, PM₁₀ remained considerably more variable, stabilizing around an MAE 
of 0.19. This discrepancy indicates that while the LSTM can capture short-term fluctuations for PM₂.₅, its 
predictive accuracy for PM₁₀ is still limited, reflecting both the complexity of PM₁₀ dynamics and the restricted 
size of the training dataset (WHO, 2021; EPA, 2023). 

To further analyze model behavior, the evolution of one representative weight (W[0,0]) in the LSTM layer 
was tracked across epochs. As shown in Figure 7, the weight values gradually stabilized, reflecting the network's 
adjustment of its memory capacity to retain temporal patterns (Hochreiter & Schmidhuber, 1997; Gers, 
Schraudolph, & Schmidhuber, 2002). 
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Figure 7. Evolution of weight W[0,0] in the LSTM layer during training, showing gradual stabilization. 
Source: Own elaboration. 

4.2. Example Prediction 
To illustrate model output, the last validation sequence was used for next-hour forecasting. After 

denormalization, the system predicted PM₂.₅ = 8.48 µg/m³ and PM₁₀ = 23.92 µg/m³. These values are plausible 
within the range of background concentrations in Bogotá (Área Metropolitana de Bogotá, 2025), showing that the 
network can reproduce general trends in the RMCAB monitoring data. 

However, this single-case example cannot be interpreted as robust validation. The prediction corresponds to 
relatively stable conditions and may not generalize to episodes of rapid change, such as wildfires or traffic peaks 
(Ministerio de Ambiente y Desarrollo Sostenible, 2017; IDEAM, 2021). At this stage, the model approximates 
baseline conditions but lacks the precision needed for reliable operational use. 
 
4.3. Comparison with Baselines 

The LSTM model was compared against preliminary baselines, including simple RNNs and persistence 
models. Table 2 summarizes the approximate training and validation losses observed during convergence, together 
with short explanations of each baseline to ensure accessibility for non-specialist readers. 

Table 2. Loss comparison across models (normalized scale) 

Model PM₂.₅ Loss PM₁₀ Loss Total Loss Description 

Persistence 0.15 0.22 0.37 

Baseline model that assumes the next concentration will 
be equal to the last observed value. Performs well under 

stable conditions but fails during sudden changes or 
pollution spikes. 

Simple 
RNN 0.12 0.21 0.33 

A basic recurrent neural network that captures temporal 
dependencies but is limited by the vanishing gradient 

problem. 

Proposed 
LSTM 0.0019 0.0359 0.037 

Model with long-term memory mechanisms that 
significantly improves PM₂.₅ predictions and provides 

moderate gains for PM₁₀. 
Source: Own elaboration 

 
As illustrated in Figure 8, MAE trajectories for PM₂.₅ reached low and stable levels, while PM₁₀ remained 

more variable, with significant fluctuations even at later epochs. These results confirm that although the LSTM 
outperforms baselines, especially for PM₂.₅, it still struggles to model pollutants with episodic or localized 
dynamics (Franceschi et al., 2018). 
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Figure 8. Mean Absolute Error (MAE) curves for PM₂.₅ and PM₁₀ across training and validation sets. 
Source: Own elaboration. 

4.4. Implications for Air Quality Management 
From a regulatory standpoint, even the limited ability of the LSTM to predict pollutant concentrations one 

hour ahead provides a useful initial step toward data-driven early-warning systems (Alcaldía Mayor de Bogotá, 
2017; MinAmbiente, 2017). In principle, the framework could be extended to 24–72 hour horizons, which would 
align with the contingency plans established under Resolution 2254 of 2017. 

However, at its current stage, the methodology must be regarded strictly as a proof of concept. Accuracy 
limitations, the absence of meteorological covariates, and the relatively small dataset restrict its immediate 
applicability for operational air quality management. With further development, including hybrid architectures 
(CNN–LSTM, attention mechanisms) and the integration of weather data (Casallas García et al., 2021), the system 
could evolve into a practical decision-support tool. 
 

5. Limitations 
 
Although the results demonstrate the potential of LSTM networks for air quality forecasting in Bogotá, 

several limitations restrict the generalizability and operational use of this proof of concept. First, the input space 
was limited to pollutant concentrations alone. The exclusion of meteorological variables such as temperature, 
relative humidity, wind speed, and atmospheric pressure reduces the model’s ability to account for external drivers 
of particulate matter dynamics. These variables are known to strongly influence dispersion, accumulation, and 
chemical transformation processes, and their absence partially explains the weaker performance observed for 
PM₁₀. 

Second, the size of the dataset constrained the training process. Although the Bogotá Air Quality Monitoring 
Network provides continuous hourly measurements, the relatively short historical window available for this study 
limited the diversity of pollution scenarios included in training and validation. This scarcity increases the risk of 
overfitting and reduces the robustness of the model across seasons and atypical conditions. 

Third, the model's capacity to generalize to real-world scenarios remains limited. Situations such as wildfire 
smoke intrusions, holiday traffic peaks, or industrial events often cause abrupt changes in pollutant concentrations 
that the current model struggles to capture. Without extensive testing on such extreme events, the predictive 
accuracy demonstrated here should not be interpreted as readiness for operational deployment. 

In summary, the model should be regarded as a preliminary step that demonstrates feasibility rather than as 
a reliable decision-support tool. Future work must address these limitations by incorporating meteorological 
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covariates, expanding the dataset through longer monitoring periods, and validating the approach under diverse 
real-world conditions. 

6. Future development 
 

Building on the limitations identified, the next stage of this research involves the full implementation of the 
intelligent air quality monitoring system illustrated in Figure 9. The proposed framework expands the current 
LSTM-based prediction model into a comprehensive decision-support platform that integrates data storage, 
interactive interfaces, and artificial intelligence components. First, the system will connect the LSTM model with 
a database infrastructure designed to manage large volumes of historical air quality records, ensuring efficient 
storage, retrieval, and preprocessing of RMCAB data. A user interface will provide real-time interaction with 
predictions. At the same time, integration with a large language model (LLM) such as GPT-3.5, coupled with a 
retrieval-augmented generation (RAG) module, will enable intelligent responses grounded in both scientific 
evidence and legal frameworks (Hochreiter & Schmidhuber, 1997; Pascanu, Mikolov, & Bengio, 2013; Chollet, 
2015; Gers, Schraudolph, & Schmidhuber, 2002). Together, these elements will transform the model into an 
intelligent monitoring assistant capable not only of predicting pollutant levels but also of providing explanations 
and actionable recommendations to the public and policymakers. 

Second, to improve predictive accuracy, meteorological variables such as temperature, humidity, and 
atmospheric pressure will be incorporated. These factors are known to influence particulate matter dynamics 
strongly, and their integration will enable the model to capture environmental drivers of pollution more effectively 
(Pascanu et al., 2013; World Health Organization, 2021; Casallas García et al., 2021). Additionally, longer training 
datasets covering up to 60 days of historical RMCAB records will be stored in an SQLite database, enhancing the 
model’s ability to identify seasonal cycles and improve long-term forecasting performance (Abadi et al., 2016; 
Franceschi et al., 2018; Zaharia et al., 2020). 

Third, the development of an interactive assistant powered by LLMs will provide a natural language interface 
for interpreting model outputs. Users will be able to query the system through a graphical interface, receiving 
plain-language explanations of forecasted pollution levels, automatic recommendations based on scientific 
knowledge, and context-specific references to regulatory frameworks such as Resolution 2254 of 2017 (Alcaldía 
Mayor de Bogotá, 2017; Ministerio de Ambiente y Desarrollo Sostenible, 2017). A RAG engine will ensure that 
responses are enriched with information retrieved from legal databases and scientific articles, thus improving 
transparency and reliability (Chollet, 2015; Docker Inc., 2020; U.S. EPA, 2023). 

In summary, the proposed developments aim to evolve the predictive model into a comprehensive early 
warning and advisory system aligned with international sustainability agendas. By integrating LSTMs, 
meteorological factors, long-term historical data, and intelligent assistants, the platform will contribute to 
achieving Sustainable Development Goal 13 (Climate Action) and support Bogotá’s efforts to reduce exceedance 
days of PM₂.₅ and PM₁₀ by 2030 (Ministerio de Ambiente y Desarrollo Sostenible, 2025). 
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Figure 9. Process diagram for a prediction and recommendations system for PM₂.₅ and PM₁₀. Source: Own 
elaboration 

6. Conclusions 
 
This study developed and tested a proof-of-concept predictive system for hourly PM₂.₅ and PM₁₀ 

concentrations in Bogotá, based on 24-hour temporal windows and a Long Short-Term Memory (LSTM) 
architecture with 64 recurrent units and two dense output layers. Implemented in Keras/TensorFlow and trained 
with data from the Bogotá Air Quality Monitoring Network (RMCAB), the model outperformed simple baselines 
such as persistence and basic RNNs, particularly for PM₂.₅. However, performance for PM₁₀ remained limited, 
confirming that this research should be interpreted as an exploratory step rather than an operational forecasting 
tool. 

From a regulatory perspective, the system demonstrates potential as a foundation for early-warning 
frameworks aligned with Resolution 2254 of 2017. Nonetheless, its current accuracy and generalizability are 
constrained by several limitations: the exclusion of meteorological covariates, the relatively small training dataset, 
and the difficulty of capturing episodic pollution events such as wildfires or traffic peaks. Addressing these gaps 
will be essential before any deployment in real-world decision-making contexts. 

The study highlights the importance of reproducibility and scalability in environmental modeling. The 
integration of collaborative platforms such as Google Colab, containerization through Docker, and monitoring 
frameworks like MLflow and TensorBoard provides a transferable workflow for future projects. 

Future work should expand the input space to include meteorological variables (temperature, humidity, 
atmospheric pressure), test hybrid architectures (CNN–LSTM, attention mechanisms), and evaluate forecasts at 
longer horizons (24–72 hours). Recent advances show that hybrid designs integrating CNNs, LSTMs, and 
attention can substantially reduce forecasting errors and improve robustness compared to standalone models 
(Zhang et al., 2023; Liang et al., 2025; Lv et al., 2024). Incorporating these strategies will be essential for 
improving predictive accuracy and moving from experimental prototypes toward practical systems for air quality 
management. 

In summary, while the results remain preliminary, this research contributes an initial step toward data-driven 
air quality forecasting in Bogotá. It offers both methodological lessons and a pathway for developing more 
reliable, interpretable, and impactful predictive systems that can ultimately support public health strategies, 
regulatory compliance, and broader sustainability goals, including Sustainable Development Goal 13 (Climate 
Action). 
6.1. Managerial Implications 

For policymakers and environmental authorities, this research illustrates how machine learning can 
eventually support proactive air quality management in Bogotá. Even at a proof-of-concept stage, the framework 
points to the possibility of using LSTM-based models to anticipate pollution episodes and align responses with 
Resolution 2254 of 2017. If refined and validated, such tools could guide contingency measures, improve 
communication through Air Quality Index platforms, and foster greater public awareness. The study, therefore, 
highlights a pathway for integrating predictive analytics into regulatory practice while recognizing that further 
development is necessary before operational adoption. 
 
6.2. Theorical Implications 

From an academic standpoint, this work contributes to the literature on deep learning for environmental 
forecasting by adapting a multi-output LSTM to simultaneously predict PM₂.₅ and PM₁₀. This approach 
underscores the value of shared representations in time-series modeling and demonstrates how recurrent 
architectures can be tailored to complex urban datasets. Beyond the model itself, the use of reproducible tools 
such as TensorFlow, Docker, and MLflow emphasizes the importance of transparent, scalable workflows in 
applied machine learning research. These insights open avenues for future studies exploring hybrid neural 
architectures and the integration of meteorological and regulatory data, advancing both machine learning 
methodology and environmental science. 
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